当前位置: 首页 > news >正文

最小生成树 | 市政道路拓宽预算的优化 (Minimum Spanning Tree)

任务描述:

市政投资拓宽市区道路,本着执政为民,节省纳税人钱的目的,论证是否有必要对每一条路都施工拓宽?

这是一个连问带答的好问题。项目制学习可以上下半场,上半场头脑风暴节省投资的所有可行的思路;

下半场总结可行的思路,归为算法问题解决。

思路

MST = Minimum Spanning Tree 最小生成树

1、选择每一个节点的最短边,加入树Tree,涂成颜色标记如下:

2、同时避免形成环路,

3、遍历所有的节点,循环执行以上步骤直至所有节点都在MST中;

使用Kruskal算法求解最小生成树(Minimum Spanning Tree)的Python代码实现

#上述代码利用Kruskal算法的贪心思想, 每次选择权值最小的边加入MST, 同时避免形成环路,

#直到遍历完所有节点, 得到最小生成树的所有边。

Kruskal算法和Prim算法都是解决最小生成树(Minimum Spanning Tree,MST)问题的常用算法,但它们的工作原理和实现方式略有不同。以下是它们之间的主要区别:

  1. 工作原理

    • Kruskal算法:Kruskal算法基于贪心策略。它首先将所有的边按权重升序排列,然后从最小权重的边开始,逐渐构建最小生成树。在构建的过程中,Kruskal算法不断选择下一条最小权重的边,但要确保选择的边不会形成环路。它使用了一个并查集(Disjoint Set)数据结构来判断边是否会形成环路。

    • Prim算法:Prim算法也是一种贪心算法,但它从一个初始顶点开始,逐步添加顶点到最小生成树中。它每次选择一个与当前最小生成树相邻的顶点,并选择连接它们的边中权重最小的那条边。这个过程一直进行,直到所有顶点都包含在最小生成树中为止。

  2. 起始点

    • Kruskal算法:Kruskal算法不需要指定一个起始点,它从边集合出发,根据权重来构建最小生成树。

    • Prim算法:Prim算法需要指定一个起始点,它从指定的起始点开始构建最小生成树。

  3. 数据结构

    • Kruskal算法:Kruskal算法主要依赖于边的排序和并查集数据结构,用于检测环路。

    • Prim算法:Prim算法通常使用优先队列(Priority Queue)来管理候选边和顶点,以及一个数组来维护顶点的键(键表示连接到最小生成树的最小边的权重)。

  4. 适用情况

    • Kruskal算法:Kruskal算法适用于稀疏图,即边相对较少的情况。它不受起始点选择的限制,因此在不同起始点下可能会得到相同的最小生成树。

    • Prim算法:Prim算法适用于稠密图,即边相对较多的情况。它的最终结果可能受起始点选择的影响,因为不同的起始点可能会导致不同的最小生成树。

总的来说,Kruskal算法和Prim算法都是有效的最小生成树算法,选择哪个算法取决于具体的问题和图的性质。在实际应用中,可以根据图的密度和其他要求来选择适当的算法。

import sys
class Graph:def __init__(self):self.graph = {}def add_edge(self, u, v, w):if u not in self.graph:self.graph[u] = {}if v not in self.graph:self.graph[v] = {}self.graph[u][v] = wself.graph[v][u] = wdef prim(self):key = {}parent = {}mst_set = set()# 初始化key值为无穷大for vertex in self.graph:key[vertex] = sys.maxsize# 从起始顶点开始start_vertex = list(self.graph.keys())[0]key[start_vertex] = 0parent[start_vertex] = Nonewhile mst_set != set(self.graph.keys()):# 找到key值最小的未加入MST的顶点min_vertex = Nonefor vertex in self.graph:if vertex not in mst_set and (min_vertex is None or key[vertex] < key[min_vertex]):min_vertex = vertexmst_set.add(min_vertex)# 更新与min_vertex相邻的顶点的key值和parentfor neighbor, weight in self.graph[min_vertex].items():if neighbor not in mst_set and weight < key[neighbor]:key[neighbor] = weightparent[neighbor] = min_vertex# 构建最小生成树的边列表mst_edges = []for vertex, p in parent.items():if p is not None:mst_edges.append((p, vertex, key[vertex]))return mst_edges
创建图并添加边
g = Graph()
g.add_edge("A", "B", 10)
g.add_edge("A", "H", 11)
g.add_edge("A", "G", 14)
g.add_edge("B", "H", 12)
g.add_edge("B", "C", 16)
g.add_edge("C", "D", 15)
g.add_edge("D", "K", 13)
g.add_edge("D", "E", 14)
g.add_edge("E", "K", 13)
g.add_edge("E", "F", 17)
g.add_edge("F", "H", 17)
g.add_edge("F", "G", 16)
g.add_edge("G", "H", 13)
g.add_edge("H", "K", 15)
计算最小生成树
mst = g.prim()# 打印最小生成树的边和权重
s = 0
for u, v, w in mst:s += wprint(f"{u} - {v}: {w}")
print('total = ',s)A - B: 10
A - H: 11
H - G: 13
D - C: 15
G - F: 16
H - K: 15
K - D: 13
K - E: 13total =  106

根据图的疏密程度选择合适的最小生成树算法是一个重要的考虑因素。下面是对于不同的图疏密程度如何选择算法的一些建议:

  1. 稀疏图(Sparse Graph)

    • Kruskal算法:对于稀疏图,通常边的数量相对较少,这使得Kruskal算法的效率较高。因为Kruskal算法不依赖于起始点,适合用于连接各个部分的边比较少的情况。如果图是非连通的,Kruskal算法也可以应对。

    • Prim算法:虽然Prim算法也可以用于稀疏图,但在这种情况下,通常Kruskal算法更具优势,因为它的时间复杂度相对较低。

  2. 稠密图(Dense Graph)

    • Prim算法:稠密图通常包含大量的边,此时Prim算法更适合,因为它在连接到当前最小生成树的顶点之间选择边的效率更高。Prim算法的时间复杂度在稠密图中通常比Kruskal算法更低。

  3. 图的连通性

    • Kruskal算法:如果图是非连通的,Kruskal算法可以构建最小生成森林,而不需要将图变为连通的。这在一些应用中可能很有用。

  4. 起始点选择

    • Kruskal算法:Kruskal算法不受起始点选择的限制,因此在不同的起始点下可能会得到相同的最小生成树。这对于某些问题可能是一个优点。

    • Prim算法:Prim算法需要指定一个起始点,因此选择起始点可能会影响最终的最小生成树结果。在某些情况下,选择不同的起始点可能导致不同的最小生成树。

总的来说,根据图的疏密程度、连通性和起始点选择的灵活性来选择最小生成树算法。通常,如果图较稀疏,可以优先考虑Kruskal算法,如果图较稠密,可以优先考虑Prim算法。然而,具体的应用可能需要根据问题的特点进行权衡和选择。

同学对算法缺乏兴趣或没有时间研究的,最好的选择,也是Python的优势所在,直接导入第三方库。

额外的福利是收获直观可见的无向图,顺便学习一点可视化。

import networkx as nx
import matplotlib.pyplot as plt#1 创建一个空的无向图
G = nx.Graph()#2 添加节点
G.add_node("A")
G.add_node("B")
G.add_node("C")
G.add_node("D")
G.add_node("E")    
G.add_node("F")
G.add_node("G")
G.add_node("H")
G.add_node("K")#根据需求添加边两端连接节点#3 添加边(连接节点)
G.add_edge("A", "B", weight=10)
G.add_edge("A", "H", weight=11)
G.add_edge("A", "G", weight=14)
G.add_edge("B", "H", weight=12)
G.add_edge("B", "C", weight=16)
G.add_edge("C", "D", weight=15)
G.add_edge("D", "K", weight=13)
G.add_edge("D", "E", weight=14)
G.add_edge("E", "K", weight=13)
G.add_edge("E", "F", weight=17)
G.add_edge("F", "H", weight=17)
G.add_edge("F", "G", weight=16)
G.add_edge("G", "H", weight=13)
G.add_edge("H", "K", weight=15)# 绘制图形
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=700, node_color='skyblue', font_size=10, font_color='black')
labels = nx.get_edge_attributes(G, 'weight')
nx.draw_networkx_edge_labels(G, pos, edge_labels=labels)# 查找最小生成树
minimum_spanning_tree = nx.minimum_spanning_tree(G)
print("Minimum Spanning Tree Edges:")
s = 0
for edge in minimum_spanning_tree.edges(data=True):s += edge[2]['weight']print(edge)# 查找节点之间的最短路径
shortest_path = nx.shortest_path(G, source="A", target="D", weight="weight")
print("Shortest Path from A to D:", shortest_path)# 计算最短路径长度
shortest_path_length = nx.shortest_path_length(G, source="A", target="D", weight="weight")
print("Shortest Path Length from A to D:", shortest_path_length)# 查找节点之间的最短路径
shortest_path = nx.shortest_path(G, source="H", target="K", weight="weight")
print("Shortest Path from H to K:", shortest_path)# 计算最短路径长度
shortest_path_length = nx.shortest_path_length(G, source="H", target="K", weight="weight")
print("Shortest Path Length from H to K:", shortest_path_length)# Total length of Minimum Spanning Tree Edgesprint(''' totals ''')
print(minimum_spanning_tree) #Graph with 9 nodes and 8 edges
print([edge for edge in minimum_spanning_tree])
print('total length = ',s)# 显示图形
plt.show()

输出结果:

Minimum Spanning Tree Edges:
('A', 'B', {'weight': 10})
('A', 'H', {'weight': 11})
('C', 'D', {'weight': 15})
('D', 'K', {'weight': 13})
('E', 'K', {'weight': 13})
('F', 'G', {'weight': 16})
('G', 'H', {'weight': 13})
('H', 'K', {'weight': 15})Shortest Path from A to D: ['A', 'H', 'K', 'D']
Shortest Path Length from A to D: 39
Shortest Path from H to K: ['H', 'K']
Shortest Path Length from H to K: 15totals 
Graph with 9 nodes and 8 edges
['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'K']
total length =  106

与原题的图等价。

最小生成树为:

('A', 'B', {'weight': 10})

('A', 'H', {'weight': 11})

('C', 'D', {'weight': 15})

('D', 'K', {'weight': 13})

('E', 'K', {'weight': 13})

('F', 'G', {'weight': 16})

('G', 'H', {'weight': 13})

('H', 'K', {'weight': 15})

相关文章:

最小生成树 | 市政道路拓宽预算的优化 (Minimum Spanning Tree)

任务描述&#xff1a; 市政投资拓宽市区道路&#xff0c;本着执政为民&#xff0c;节省纳税人钱的目的&#xff0c;论证是否有必要对每一条路都施工拓宽&#xff1f; 这是一个连问带答的好问题。项目制学习可以上下半场&#xff0c;上半场头脑风暴节省投资的所有可行的思路&a…...

Java实现使用多线程,实现复制文件到另一个目录,起不一样的名字,创建100万个数据

目录 1 需求2 实现 1 需求 我现在有一个300MB 的文件&#xff0c;想要根据这个文件&#xff0c;创建100万个大小一样的&#xff0c;名称不一样&#xff0c;如何实现&#xff0c;如何比较快点实现 2 实现 1 先准备好这个文件 2 准备好目录 3 写代码 private static void crea…...

uni-app:canvas-图形实现1

效果 代码 <template><view><!-- 创建了一个宽度为300像素&#xff0c;高度为200像素的canvas元素。canvas-id属性被设置为"firstCanvas"&#xff0c;可以用来在JavaScript中获取该canvas元素的上下文对象。 --><canvas style"width:200p…...

【算法分析与设计】动态规划(下)

目录 一、最长公共子序列1.1 最长公共子序列的结构1.2 子问题的递归结构1.3 计算最优值1.4 举例说明1.5 算法的改进 二、最大子段和2.1 代码2.2 最大子段和问题的分治算法2.3 代码2.4 分治算法的时间复杂度2.5 最大子段和问题的动态规划算法 三、凸多边形最优三角剖分3.1 三角剖…...

计算机图像处理-均值滤波

均值滤波 线性滤波器的原始数据与滤波结果是一种算术运算&#xff0c;即用加减乘除等运算实现&#xff0c;如均值滤波器&#xff08;模板内像素灰度值的平均值&#xff09;、高斯滤波器&#xff08;高斯加权平均值&#xff09;等。由于线性滤波器是算术运算&#xff0c;有固定…...

FreeRTOS入门教程(空闲任务和钩子函数及任务调度算法)

文章目录 前言一、空闲任务概念二、钩子函数概念三、任务调度算法四、任务调度算法实验1.实验代码2.是否抢占3.时间片是否轮转4.空闲任务让步 总结 前言 本篇文章将带大家学习一下什么是空闲任务以及钩子函数&#xff0c;以及学习FreeRTOS中的任务调度算法&#xff0c;了解在F…...

Javascript真的是10天内做出来的吗?

我曾听说&#xff0c;Javascript 之所以有这么多缺点&#xff0c;是因为它的第一个版本是在短短十天内完成的。我很好奇&#xff1a;1&#xff09;这是否属实&#xff1b;2&#xff09;这是否能解释这种语言的缺陷。 经过一番研究&#xff0c;我可以不自信地说&#xff1a;是的…...

picoctf_2018_got_shell

picoctf_2018_got_shell Arch: i386-32-little RELRO: Partial RELRO Stack: No canary found NX: NX enabled PIE: No PIE (0x8048000)32位&#xff0c;只开了NX int __cdecl __noreturn main(int argc, const char **argv, const char **envp) {_DWOR…...

作用域 CSS 回来了

几年前&#xff0c;消失的作用域 CSS&#xff0c;如今它回来了&#xff0c;而且比以前的版本要好得多。 更好的是&#xff0c;W3C规范基本稳定&#xff0c;现在Chrome中已经有一个工作原型。我们只需要社区稍微关注一下&#xff0c;引诱其他浏览器构建它们的实现&#xff0c;并…...

简述ceph文件储存系统

Ceph 是一个统一的分布式存储系统和共享机制&#xff0c;它定义了数据如何存储在一个或多个节点上并呈现给其他机器以供文件访问。 Ceph特点 高性能 a. 摒弃了传统的集中式存储元数据寻址的方案&#xff0c;采用CRUSH算法&#xff0c;数据分布均衡&#xff0c;并行度高。 b.考…...

计算机图像处理:椒盐噪声和高斯噪声

图像滤波 图像滤波&#xff0c;即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制&#xff0c;同时会造成图像一定程度上的模糊&#xff0c;这也叫做平滑或者低通滤波。无论是均衡化直方图和图像滤波&#xff0c;都一定程度上降低了图像阈值分割的难度&#xff0c;直…...

SQL SELECT 子查询与正则表达式

在之前的文章中已经探讨了 SQL SELECT 语句的基础和进阶用法,以及如何通过高级技巧来进行更复杂的数据查询和分析。本文将介绍 SQL SELECT 语句中的子查询和正则表达式的使用。这些是 SQL 中非常强大的工具,能让您进行更复杂和精细的数据操作。 文章目录 子查询基础与应用子…...

Package vips was not found in the pkg-config search path的解决方案

出现该问题是因为pkg-config未安装或未成功设置环境变量。 下文是centos下的操作。 前提 先安装C编译环境&#xff1a; yum -y install gcc-c 否则会报错configure: error: no acceptable C compiler found in $PATH 成功后gcc -v会显示版本信息。 下载&安装 pkg-config 传…...

Vue封装全局SVG组件

1.SVG图标配置 1.安装插件 npm install vite-plugin-svg-icons -D 2.Vite.config.ts中配置 import { createSvgIconsPlugin } from vite-plugin-svg-icons import path from path export default () > {return {plugins: [createSvgIconsPlugin({// Specify the icon fo…...

课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)

磁性测量工具安装在非磁性钻铤内&#xff0c;如图1&#xff0c;以避免磁性随钻测量工具测量时受到外部干扰。 测量系统采用三轴加速度计和三轴磁通门&#xff0c;并采用冗余设计&#xff0c;由于井下振动剧烈&#xff0c;陀螺仪的可靠性将大大降低。为了保证整个钻井过程中系统…...

Docker-Windows安装使用

1.下载docker https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors 2.配置虚拟化环境 通过控制面板“设置”启用 Hyper-V 角色 右键单击 Windows 按钮并选择“应用和功能”。选择相关设置下右侧的“程序和功能”。选择“打开或关闭 Windows 功能”。选择“Hyper-…...

在Windows11上安装ubuntu虚拟机

一开始是参考了 VMware17虚拟机安装Ubuntu最新版本(Ubuntu22.04LTS)详细步骤 专栏的1和2来的。但是后面总是提示operating system not found&#xff0c;就参考vmware安装ubuntu时总是提示operating system not found&#xff0c;选择典型安装而不是专栏选择的自定义安装&#…...

【微服务】spring 控制bean加载顺序使用详解

目录 一、前言 二、使用order注解控制顺序 2.1 order 注解使用示例 2.2 order注解顺序失效问题 2.2.1 order失效问题解决办法 2.3 实现Ordered接口 三、使用dependon注解控制顺序 四、AutoConfiguration注解控制bean加载顺序 4.1 AutoConfigureBefore 操作演示 4.2 A…...

python-切换镜像源和使用PyCharm进行第三方开源包安装

文章目录 前言python-切换镜像源和使用PyCharm进行第三方开源包安装1. 切换镜像源2. 使用PyCharm进行第三方开源包安装 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易啊^ _ ^。   而且听说点赞的人每…...

tp6 + swagger 配置文档接口

ThinkPHP 6.0 运行环境要求PHP7.2&#xff0c;兼容PHP8.1 安装 composer create-project topthink/think tp 6.0.*如果需要更新框架使用 composer update topthink/framework文档 完全开发手册 swagger 文档 注解文档 安装包 composer require zircote/swagger-php 引用…...

试图一文彻底讲清 “精准测试”

在软件测试中&#xff0c;我们常常碰到两个基本问题&#xff08;困难&#xff09;&#xff1a; 很难保障无漏测&#xff1a;我们做了大量测试&#xff0c;但不清楚测得怎样&#xff0c;对软件上线后会不会出问题&#xff0c;没有信心&#xff1b; 选择待执行的测试用例&#…...

Visual Studio 删除行尾空格

1.CtrlH 打开替换窗口&#xff08;注意选择合适的查找范围&#xff09; VS2010: VS2017、VS2022: 2.复制下面正则表达式到上面的选择窗口(注意前面有一个空格)&#xff1a; VS2010: $ VS2017、VS2022: $ 3.下面的替换窗口不写入 VS2010: VS2017、VS2022: 4.点选“正则表达式…...

LeetCode_BFS_中等_1926.迷宫中离入口最近的出口

目录 1.题目2.思路3.代码实现&#xff08;Java&#xff09; 1.题目 给你一个 m x n 的迷宫矩阵 maze &#xff08;下标从 0 开始&#xff09;&#xff0c;矩阵中有空格子&#xff08;用 ‘.’ 表示&#xff09;和墙&#xff08;用 ‘’ 表示&#xff09;。同时给你迷宫的入口 …...

开源Windows12网页版HTML源码

开源Windows12网页版HTML源码&#xff0c;无需安装就能用的Win12网页版来了Windows12概念版&#xff08;PoweredbyPowerPoint&#xff09;后深受启发&#xff0c;于是通过使用HTML、CSS、js等技术做了这样一个模拟板的Windows12系统&#xff0c;并已发布至github进行开源。 这…...

vscode中使用指定路径下的cmake

在 Visual Studio Code 中指定自定义的 CMake 路径&#xff0c;你可以通过以下步骤来实现&#xff1a; 打开你的 CMake 项目所在的文件夹&#xff0c;在 Visual Studio Code 中。 在项目文件夹中&#xff0c;创建一个名为 .vscode 的文件夹&#xff0c;如果它还不存在。 在 .…...

复杂度分析

文章目录 如何分析、统计算法的执行效率和资源消耗&#xff1f;为什么需要复杂度分析&#xff1f;测试结果非常依赖测试环境测试结果受数据规模的影响很大 大O复杂度表示法时间复杂度分析只关注循环次数最多的一段代码加法法则&#xff1a;总复杂度等于量级最大的那段代码的复杂…...

Linux安装jrockit-jdk1.6.0_29-R28.2.0-4.1.0-linux-x64

下载软件&#xff1a;jrockit-jdk1.6.0_29-R28.2.0-4.1.0-linux-x64.bin 执行安装 ./jrockit-jdk1.6.0_29-R28.2.0-4.1.0-linux-x64.bin 安装提示&#xff0c;一路next&#xff0c;注意第二步修改安装的路径&#xff0c;请修改成&#xff1a; <------------------------ O…...

7.2 怎样定义函数

7.2.1 为什么要定义函数 主要内容&#xff1a; 为什么要定义函数 C语言要求所有在程序中用到的函数必须“先定义&#xff0c;后使用”。这是因为在调用一个函数之前&#xff0c;编译系统需要知道这个函数的名字、返回值类型、功能以及参数的个数与类型。如果没有事先定义&…...

Chrome扩展V2到V3的变化

Chrome扩展manifest V3变化、升级迁移指南_chrome_ZK645945-华为云开发者联盟 (csdn.net) 1.background //V2 "background": "background.js"//V3 "background": {"service_worker": "background.js"} 2.executeScript …...

lock、tryLock、lockInterruptibly有什么区别?

lock、tryLock 和 lockInterruptibly 都是用于线程同步的方法,但它们有不同的行为和用途: lock() 方法:lock() 方法是 Java 中 Lock 接口定义的一部分,它用于获取锁并阻塞当前线程,直到锁可用为止。如果锁当前被其他线程占用,lock() 方法会导致当前线程阻塞,直到锁被释放…...

做繁体书的网站/优化服务是什么意思

第一步&#xff0c;你需要一张英文底图。 设置map的属性&#xff0c;lang为‘en即可。 类参考&#xff1a; 地图展示代码&#xff1a; var map new AMap.Map(mapContainer, {center: [121.498586, 31.239637], //地图中心点坐标lang: en, //英文底图zoom:16 //地图级别&#x…...

网站无icp备案/个人在线网站推广

号称第一的免费精美图片分享站&#xff0c;可商用&#xff0c;完全免费   StockSnap:免费图片素材高清资源库是一个提供可自由下载使用的高清晰摄影图片作品的素材库&#xff0c;所提供的资源相当实用&#xff0c;该网站由多位摄影师组成&#xff0c;提供丰富的免费照片&…...

白云网站建设多少钱/网络上哪里可以做推广

https://www.cnblogs.com/zhangzhifeng/category/835602.html 这是个困惑我很长时间的问题&#xff0c;到今天终于得到解决了。 话说Delphi有个很强的窗体设计器&#xff0c;这一点让VC粉丝垂涎三尺而不可得。但是&#xff0c;Delphi里设计的窗体并没有自动适应屏幕分辨率的属性…...

服装行业网站模板/性能优化工具

实训一 码云地址&#xff1a;https://gitee.com/SoridoD/java_shixun1 洪雨码云地址 选取题目&#xff1a;黄金点 需求&#xff1a;阿超的课都是下午两点钟&#xff0c;这时班上不少的同学都昏昏欲睡&#xff0c;为了让大家兴奋起来&#xff0c;阿超让同学玩一个叫“黄金点”的…...

响应式自适应网站/互联网营销师报名

入门使用 例1:使用编译好的kenlm工具手动生成file.arpa&#xff0c;然后测试如下代码 #include "lm/model.hh" #include <iostream> #include <string> int main() {using namespace lm::ngram;Model model("file.arpa");State state(model.…...

做网站需要上门服务吗/表白网页制作免费网站制作

0x00 前言 为了练习python&#xff0c;强迫自己能用Python的题都用python解题还有各种密码 0x01 奇怪的字符串 实验吧题目&#xff1a;信息保密的需求和实际操作自古有之&#xff0c;与之相应的信息加密与解密也是历史悠久&#xff0c;现有一段经过古典密码理论&#xff08;不止…...