【自监督Re-ID】ICCV_2023_Oral | ISR论文阅读
Codehttps://github.com/dcp15/ISR_%20ICCV2023_Oral
面向泛化行人再识别的身份导向自监督表征学习,清华大学
目录
导读
摘要
相关工作
DG ReID
用于ReID的合成数据
无监督表征学习
Identity-Seeking Representation Learning
结果
消融实验
导读
-
新角度:提出了从大规模无标注互联网行人视频中学习领域泛化的行人表征。
-
新方法:设计了新颖的自监督的学习框架以及可靠性引导的对比损失函数,有效学习到identity discrimination。所提方法具有出色的数据可扩展性。
-
高性能:所学表征展现出很强的域泛化能力和域迁移能力,具有很大的实际应用价值和潜力。
摘要
本文旨在从大规模视频中学习一种无需任何注释的域泛化(DG)行人再识别(ReID)表示。由于标注成本高,先前的DG ReID方法使用有限的标注数据进行训练,这限制了进一步发展。为了克服数据和注释的障碍,我们建议使用大规模的无监督数据进行训练。关键问题在于如何挖掘身份信息。为此,我们提出了一种ISR(Identity-seeking Self-supervised Representation learning)方法。ISR将实例关系建模当做最大权重二分匹配问题,从帧间图像构建正样本对。进一步提出了一种可靠性引导的对比损失,以抑制噪声正样本对的不利影响,确保可靠的正样本对主导学习过程。ISR的训练成本与数据大小近似呈线性关系,因此可以利用大规模数据进行训练。所学习的表示表现出很强的泛化能力。在没有人为注释和微调的情况下,ISR在Market-1501上获得了87.0%的Rank-1,在MSMT17上获得了56.4%的Rank-1,分别比最佳有监督域泛化方法高出5.0%和19.5%。
相关工作
DG ReID
领域通用的人物识别(Domain Generalizable ReID)旨在在源领域上学习一个强大的模型,并直接在未见过的目标领域上进行测试,而无需进行微调处理。因其在实际应用中的巨大潜力而受到广泛关注。DIMN设计了一个域不变映射网络来学习元学习管道下的域不变表示。MetaBIN和SNR研究了归一化层或模块,以提高模型的泛化能力。RaMoE利用目标域和多个源域之间的相关性来提高模型的泛化能力。MDA将源和目标特征分布与先前的分布对齐。这些方法是用小规模领域匮乏的标记数据进行训练的。与他们不同的是,我们的目标是从大规模领域多样的未标记数据中学习DG ReID模型。
用于ReID的合成数据
ReID模型的性能受到从真实世界收集标注数据的高昂成本的限制。为了应对这一挑战,一些方法已经转向使用合成数据(synthetic data)。值得注意的是,PersonX包含1266个ID,其中273456张图像是从各个角度拍摄的,能够探索视角对ReID系统的影响。RandPerson提供了8000个身份,其中有来自19台摄像机的228655张图像,而UnrealPerson提供了3000个身份,包括来自34台摄像机的120000张图像;ClonedPerse包括来自24台摄像机的5621个身份和887766张图像。这些合成数据集已被证明对监督学习有价值,因为它们增强了ReID模型的泛化能力。DomainMix [1] 进一步证实,在训练期间将标记的合成数据与未标记的真实世界数据相结合是DG ReID的一个有前途的方向。然而,合成数据和真实世界的数据之间仍然存在巨大的领域差距,阻碍了在合成数据上训练的模型无缝应用于真实的现实世界场景。为了弥补这种差异,我们建议使用大量未标记的真实世界数据进行训练。
[1] Wenhao Wang, Shengcai Liao, Fang Zhao, Kangkang Cui, and Ling Shao. Domainmix: Learning generalizable person re-identification without human annotations. In BMVC, 2021. 3
无监督表征学习
一些主流的无监督表征学习方法(MoCo, SimCLR, BYOL),如果被直接应用于ReID,则只能学习预训练模型,这在直接测试时显示出极低的准确性。核心原因是,它们将一张图像的两个不同视图视为正样本对,或者对图像中的掩码像素进行重建,从而实现了实例区分(instance discrimination)。这与身份区分(identity discrimination)的ReID目标所矛盾。与它们不同,我们将同一ID的帧间图像视为正样本对,来达到身份区分的目标。一项密切相关的工作是CycAs(同团队的工作)及其改进版本。大概意思是作者针对CycAs方法的弱点提出了一种新方法,通过挖掘正样本对和抑制噪声来提供更鲁棒和通用的人物再识别表示学习的解决方案。
Identity-Seeking Representation Learning
身份导向的自监督表征学习
(1)构建正样本对
基于最大权二分图匹配,在邻近帧中构建跨帧正样本对。
(2)抑制噪声正样本对
计算每个正样本对的可靠性,利用可靠性来引导学习对比损失,进而抑制噪声正样本对的影响。
可靠性计算:,对比损失:
结果
消融实验
更多细节在论文
相关文章:
【自监督Re-ID】ICCV_2023_Oral | ISR论文阅读
Codehttps://github.com/dcp15/ISR_%20ICCV2023_Oral 面向泛化行人再识别的身份导向自监督表征学习,清华大学 目录 导读 摘要 相关工作 DG ReID 用于ReID的合成数据 无监督表征学习 Identity-Seeking Representation Learning 结果 消融实验 导读 新角度…...
ElasticSearch 10000条查询数量限制
一、前言 我们将库存快照数据导入ES后发现要分页查询10000条以后的记录会报错,这是因为ES通过index.max_result_window这个参数控制能够获取数据总数fromsize最大值,默认限制是10000条,因为ES考虑到数据要从其它节点上报到协调节点如果搜索请…...
视频增强修复工具Topaz Video AI mac中文版安装教程
Topaz Video AI mac是一款使用人工智能技术对视频进行增强和修复的软件。它可以自动降噪、去除锐化、减少压缩失真、提高清晰度等等。Topaz Video AI可以处理各种类型的视频,包括低分辨率视频、老旧影片、手机录制的视频等等。 使用Topaz Video AI非常简单ÿ…...
【面试题精讲】Java自增自减运算符
❝ 有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准https://blog.zysicyj.top ❞ 首发博客地址[1] 面试题手册[2] 系列文章地址[3] 1. 什么是自增自减运算符? 自增自减运算符是一种用于对变量进行加 1 或减 1 操作的特殊运算…...
282_WEB_对于注册、数据data_callback中进行处理的理解
这段代码是一个 HTTP 服务器中处理请求的核心部分,涉及到路由和请求处理的逻辑。让我们逐行解析代码,同时理解其中涉及的关键概念和组件。 首先,你提供的代码有一些与 HTTP 请求和路由处理相关的部分,同时还有一些可能是从一个较大的代码基础中提取的片段,因此有些变量和…...
测试C#图像文本识别模块Tesseract的基本用法
微信公众号“dotNET跨平台”的文章《c#实现图片文体提取》(参考文献3)介绍了C#图像文本识别模块Tesseract,后者是tesseract-ocr(参考文献2) 的C#封装版本,目前版本为5.2,关于Tesseract的详细介绍…...
计组+系统02:30min导图复习 存储系统
🐳前言 考研笔记整理,纯复习向,思维导图基本就是全部内容了,不会涉及较深的知识点~~🥝🥝 第1版:查资料、画思维导图~🧩🧩 编辑: 梅头脑🌸 参考…...
2023华为杯数学建模D题-域碳排放量以及经济、人口、能源消费量的现状分析(如何建立指标和指标体系1,碳排放影响因素详细建模过程)
可能建立的指标如下: 经济指标: 地区生产总值(GDP)人均GDP;第一产业(农林部门)产值;第二产业(能源供应和工业部门)产值;第三产业(建筑和交通部门…...
Excel·VBA分列、字符串拆分
看到一篇博客《VBA,用VBA进行分列(拆分列)的2种方法》,使用VBA对字符串进行拆分 目录 Excel分列功能将字符串拆分为二维数组,Split函数举例 将字符串拆分为一维数组,正则表达式举例 Excel分列功能 Sub 测…...
机器学习算法基础--层次聚类法
文章目录 1.层次聚类法原理简介2.层次聚类法基础算法演示2.1.Single-linkage的计算方法演示2.2.Complete-linkage的计算方法演示2.3.Group-average的计算方法演示 3.层次聚类法拓展算法介绍3.1.质心法原理介绍3.2.基于中点的质心法3.3.Ward方法 4.层次聚类法应用实战4.1.层次聚…...
linux系统中wifi移植方法
第一:移植wifi现象 在linux系统的RK3399中空板上,确认rk3399中控板linux系统已经可以正常运行。本操作是在rk3399中控板上的WIFI模块,linux内核加载wifi驱动后,再配置上正确的wifi密码,就可以实现rk3399中控板通过wifi…...
Machine Learning(study notes)
There is no studying without going crazy Studying alwats drives us crazy 文章目录 DefineMachine LearningSupervised Learning(监督学习)Regression problemClassidication Unspervised LearningClustering StudyModel representation(…...
centos7通过docker搭建nginx+php环境
以下环境都是基于centos7.9完成。 1.安装docker yum install docker-ce 说明:这一步,由于centos软件仓库没有收纳docker,需要自己去官网爬文档安装。 安装完成之后,就是启动docker服务以及添加到开机启动。 systemctl enable do…...
Node.js 学习笔记
小插件Template String Converter 当输入${}时,自动为其加上 反引号 一、node入门 node.js是什么 node的作用 开发服务器应用 开发工具类应用 开发桌面端应用 1.命令行工具 命令的结构 常用命令 切换到D盘——D: 查看D盘目录——dir 切换工作目录——c…...
RabbitMQ之发布确认高级
RabbitMQ之发布确认高级 一、发布确认 SpringBoot 版本1.1 确认机制方案1.2 代码架构图1.3 配置文件1.4 添加配置类1.5 消息生产者1.6 回调接口1.7 消息消费者1.8 结果分析 二、回退消息2.1 Mandatory 参数2.2 消息生产者代码2.3 回调接口2.4 结果分析 三、备份交换机3.1 代码架…...
lv5 嵌入式开发-10 信号机制(下)
目录 1 信号集、信号的阻塞 2 信号集操作函数 2.1 自定义信号集 2.2 清空信号集 2.3 全部置1 2.4 将一个信号添加到集合中 2.5 将一个信号从集合中移除 2.6 判断一个信号是否在集合中 2.7 设定对信号集内的信号的处理方式(阻塞或不阻塞) 2.8 使进程挂起(…...
【postgresql】 ERROR: multiple assignments to same column “XXX“
Cause: org.postgresql.util.PSQLException: ERROR: multiple assignments to same column "XXX"; bad SQL grammar []; nested exception is org.postgresql.util.PSQLException: ERROR: multiple assignments to same column "XXX"; 原因:or…...
一文读懂Llama 2(从原理到实战)
简介 Llama 2,是Meta AI正式发布的最新一代开源大模型。 Llama 2训练所用的token翻了一倍至2万亿,同时对于使用大模型最重要的上下文长度限制,Llama 2也翻了一倍。Llama 2包含了70亿、130亿和700亿参数的模型。Meta宣布将与微软Azure进行合…...
完整指南:如何使用 Node.js 复制文件
文件拷贝指的是将一个文件的数据复制到另一个文件中,使目标文件与源文件内容一致。Node.js 提供了文件系统模块 fs,通过该模块可以访问文件系统,实现文件操作,包括拷贝文件。 Node.js 中文件拷贝方法 在 Node.js 中,有…...
ElementUI - 主页面--动态树右侧内容管理
一.左侧动态树 1.定义组件 ①样式&数据处理 <template><el-menu class"el-menu-vertical-demo" background-color"#334157"text-color"#fff" active-text-color"#ffd04b" :collapse"collapsed" router :def…...
全国排名前三的直播公司无锋科技入驻天府蜂巢成都直播产业基地
最近,全国排名前三的直播公司——无锋科技,正式宣布入驻位于成都的天府蜂巢直播产业基地,这一消息引起了业内人士的高度关注。成都直播产业基地一直是中国直播产业的重要地标之一,其强大的技术和资源优势为众多直播公司提供了广阔…...
机器人中的数值优化|【五】BFGS算法非凸/非光滑处理
机器人中的数值优化|【五】BFGS算法的非凸/非光滑处理 往期内容回顾 机器人中的数值优化|【一】数值优化基础 机器人中的数值优化|【二】最速下降法,可行牛顿法的python实现,以Rosenbrock function为例 机器人中的数值优化|【三】无约束优化࿰…...
ESP32S3的MPU-6050组件移植教程
前言 (1)实习公司要搞ESP32BOX的驱动移植,所有资料自己找还是比较折磨人的现在我分享几个官方的组件移植资料: <1>Find the most exciting ESP-IDF components(ESP32的官方组件都可以在里面查,按照他…...
excel筛选后求和
需要对excel先筛选,后对“完成数量”进行求和。初始表格如下: 一、选中表内任意单元格,按ctrlshiftL,开启筛选 二、根据“部门”筛选,比如选择“一班” 筛选完毕后,选中上图单元格,然后按alt后&…...
pyspark 检测任务输出目录是否空,避免读取报错
前言 在跑调度任务时候,有时候子任务需要依赖前置任务的输出,但类似读取 Parquet 或者 Orc 文件时,如果不判断目录是否为空,在输出为空时会报错,所以需要 check 一下,此外Hadoop通常在写入数据时会在目录中…...
「网页开发|前端开发|Vue」10 vuex模块化:将数据划分成不同modules分别管理
本文主要介绍如何使用vuex的modules将状态数据根据不同模块进行划分并分别管理以及如何使用mapGetters快速将状态管理中的数据导入成local变量。 文章目录 本系列前文传送门一、场景说明二、使用modules划分不同模块三、使用Getters获取状态管理数据Getter传参mapGetters 辅助…...
苹果CMS插件-苹果CMS全套插件免费
网站内容的生成和管理对于网站所有者和内容创作者来说是一个挑战。有一些强大的工具可以帮助您轻松地解决这些问题。苹果CMS插件自动采集插件、采集发布插件以及采集伪原创发布插件,是这些工具之一。它们不仅可以极大地节省您的时间和精力,还可以提高您网…...
域环境介绍
一、概述 内网也指局域网,指的是某个区域由多台计算机互连而成的计算机组,范围通常在数千米以内,在局域网中,可以实现文件管理,应用软件共享,打印机共享、工作组内的日程安排、电子邮件和传真通信服务等&a…...
地球同步静止轨道上的中国卫星
3万6千公里地球同步静止轨道上的中国控制的卫星(包括香港属非国产平台卫星、外国属中国平台卫星),共80颗;截止到2023年8月3日,共有563颗在轨卫星。 号定位名称发射时间用途重量1141.1W中星1C(FH2C)2015.12.10DFH4平台…...
HAProxy代理TCP(使用HAProxy 为TiDB-Server 做负载均衡)
目录 一、使用HAProxy 为TiDB-Server 做负载均衡环境1、创建文件夹2、配置haproxy.cfg3、创建 docker-compose.yaml 文件haproxy.cfg 配置说明[参照官方文档](https://pingcap.com/docs-cn/v3.0/reference/best-practices/haproxy/ "参照官方文档") 一、使用HAProxy …...
上海网站怎么备案表/优书网
曾几何时,云计算在中国市场成为企业竞相追逐的热点。这其中既有财大气粗的互联网企业,例如BAT所属的阿里云、百度云、腾讯云,也有传统ICT企业所属的华为云、浪潮云、联想云等,此外还有专攻云计算的专业厂商,例如小鸟云…...
邯郸市永年区做网站的公司/潍坊seo网络推广
蓝色关注,回复“6”获取技术、产品人必读10本书见字如面,我是军哥。马上金三银四,这文章你需要,拿到好 offer 记得来感谢军哥哈!你是不是,谈薪的时候总谈不过 HR?你是不是,明明不想接…...
展示型网站设计/网络营销组合策略
2019独角兽企业重金招聘Python工程师标准>>> 尝试了很长时间,也试过很多办法,比如在之前使用的ubuntu中,我使用chmod -R 777 /var/www/* 为这个目录下面的所有文件赋777权限,我在fedora 15试了一下,完全不行…...
做淘宝客网站域名是别人的/网页模板免费html
转载自 http://www.linuxsir.org/bbs/showthread.php?t184419 如何从源码包安装软件? 从源码包安装软件最重要的就是仔细阅读README INSTALL等说明文件 它会告诉你怎样才能成功安装 通常从源码包安装软件的步骤是:tar jxvf gtk-2.4.13.tar.bz2 解开源码…...
做网站用什么云服务器吗/营销活动有哪些
文章目录简介均值滤波实现Sobel边缘检测实现福利简介 FPGA数字图像处理系列终于迎来了第三更了,马上要开始写毕业论文了,这次的教程写的比较潦草,不过代码和上位机都是完整的,重点参考了《基于FPGA的数字图像处理原理及应用》的第…...
沈阳做网站客户多吗/网址收录入口
defaultExpandAll:autoExpandParent"true":treeData"treeData"select"this.onSelect"/>data () {return {// expandedKeys: [0-0-0, 0-0-1], // 受控展开指定的树节点autoExpandParent: true, // 是否自动展开父节点// checkedKeys: [0-0-0],…...