当前位置: 首页 > news >正文

幂级数和幂级数的和函数有什么关系?

幂级数和幂级数的和函数有什么关系?

本文例子引用自:80_1幂级数运算,逐项积分、求导【小元老师】高等数学,考研数学

求幂级数 ∑ n = 1 ∞ 1 n x n \sum\limits_{n=1}^{\infty}\frac{1}{n}x^n n=1n1xn 的和函数
(1)求收敛半径,由于是不缺项级数所以可以使用 lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ \lim\limits_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|=\rho nlimanan+1=ρ,若是缺项级数则只能使用 lim ⁡ n → ∞ ∣ u n + 1 ( x ) u n ( x ) ∣ = ρ ∣ ϕ ( x ) ∣ < 1 \lim\limits_{n\rightarrow\infty}|\frac{u_{n+1}(x)}{u_n(x)}|=\rho|\phi(x)|\lt 1 nlimun(x)un+1(x)=ρϕ(x)<1,当然不缺项级数也可使用后者。
ρ = lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = lim ⁡ n → ∞ ∣ 1 n + 1 1 n ∣ = 1 \rho=\lim\limits_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|=\lim\limits_{n\rightarrow\infty}|\frac{\frac{1}{n+1}}{\frac{1}{n}}|=1 ρ=nlimanan+1=nlimn1n+11=1
(2)判断端点处的敛散性
x = − 1 x=-1 x=1 时, ∑ n = 1 ∞ ( − 1 ) n 1 n \sum\limits_{n=1}^{\infty}(-1)^n\frac{1}{n} n=1(1)nn1 u n = 1 n → 0 u_n=\frac{1}{n}\rightarrow0 un=n10 u n = 1 n u_n=\frac{1}{n} un=n1递减,级数收敛(利用交错级数的莱布尼茨定理判别)
x = 1 x=1 x=1 时, ∑ n = 1 ∞ 1 n \sum\limits_{n=1}^{\infty}\frac{1}{n} n=1n1 p = 1 p=1 p=1,级数发散(利用p级数判别)
(3)综上,该级数收敛域 [ − 1 , 1 ) [-1,1) [1,1)
(4)求收敛域中幂级数的和函数(在收敛域中幂级数等于其和函数,超过收敛域二者不等
s ( x ) = ∑ n = 1 ∞ 1 n x n = x + 1 2 x 2 + 1 3 x 3 + ⋯ + 1 n x n + ⋯ s(x)=\sum\limits_{n=1}^{\infty}\frac{1}{n}x^n=x+\frac{1}{2}x^2+\frac{1}{3}x^3+\cdots+\frac{1}{n}x^n+\cdots s(x)=n=1n1xn=x+21x2+31x3++n1xn+
逐项求导
s ′ ( x ) = ( ∑ n = 1 ∞ 1 n x n ) ′ = 1 + x + x 2 + ⋯ + 1 n x n − 1 + ⋯ = 1 1 − x s'(x)=\big(\sum\limits_{n=1}^{\infty}\frac{1}{n}x^n\big)'=1+x+x^2+\cdots+\frac{1}{n}x^{n-1}+\cdots=\frac{1}{1-x} s(x)=(n=1n1xn)=1+x+x2++n1xn1+=1x1
左右两端同时积分(右侧逐项积分)
s ( x ) = s ( 0 ) + ∫ 0 x s ′ ( t ) d t = 0 + ∫ 0 x 1 1 − t d t = − ln ⁡ ( 1 − x ) s(x)=s(0)+\int_0^xs'(t)dt=0+\int_0^x\frac{1}{1-t}dt=-\ln(1-x) s(x)=s(0)+0xs(t)dt=0+0x1t1dt=ln(1x)
上式为什么还有 s ( 0 ) s(0) s(0)?
∫ 0 x s ′ ( t ) d t = s ( x ) ∣ 0 x = s ( x ) − s ( 0 ) s ( x ) = s ( 0 ) + ∫ 0 x s ′ ( t ) d t \int_0^xs'(t)dt=s(x)|_0^x=s(x)-s(0)\\ ~\\ s(x)=s(0)+\int_0^xs'(t)dt 0xs(t)dt=s(x)0x=s(x)s(0) s(x)=s(0)+0xs(t)dt
最终收敛域上幂级数的和函数为:
s ( x ) = − ln ⁡ ( 1 − x ) , x ∈ [ − 1 , 1 ) s(x)=-\ln(1-x),x\in[-1,1) s(x)=ln(1x)x[1,1)
我们为什么要兜圈子先对级数求导(或积分)然后再进行积分(或求导)呢?
主要想利用等比级数,因为其和函数容易求得,而逐项求导和积分的目的是将所给幂级数变换为等比级数,随后利用等比级数求出所给幂级数的和函数

在这里插入图片描述

我们在图像中看看到底幂级数和幂级数的和函数有什么关系?
下图中幂级数的图像为绿色曲线,其实不是真正的图像,因为 n n n为无穷大,笔者这里 n n n只取到了9,仅做示意。下图中红色曲线为幂级数和函数的图像,我们可以发现在收敛域中幂级数等于其和函数,超过收敛域二者是不等的

相关文章:

幂级数和幂级数的和函数有什么关系?

幂级数和幂级数的和函数有什么关系&#xff1f; 本文例子引用自&#xff1a;80_1幂级数运算&#xff0c;逐项积分、求导【小元老师】高等数学&#xff0c;考研数学 求幂级数 ∑ n 1 ∞ 1 n x n \sum\limits_{n1}^{\infty}\frac{1}{n}x^n n1∑∞​n1​xn 的和函数 &#xff…...

Git多账号管理通过ssh 公钥的方式,git,gitlab,gitee

按照目前国内访问git&#xff0c;如果不科学上网&#xff0c;我们很大可能访问会超时。基于这个&#xff0c;所以我现在的git 配置已经增加到了3个了 一个公司gitlab&#xff0c;一个git&#xff0c;一个gitee. 以下基于这个环境&#xff0c;我们来说明下如何创建配置ssh公钥。…...

在nodejs常见的不良做法及其优化解决方案

在nodejs常见的不良做法及其优化解决方案 当涉及到在express和nodejs中开发应用程序时。遵循最佳实践对于确保项目的健壮性、可维护性和安全性至关重要。 在本文中&#xff0c;我们将探索开发人员经常遇到的几种常见的错误做法&#xff0c;并通过代码示例研究优化的最佳做法&…...

关于layui upload上传组件上传文件无反应的问题

最近使用layui upload组件时&#xff0c;碰到了上传文件无反应的问题&#xff0c;感到非常困惑。 因为使用layui upload组件不是一次两次了&#xff0c;之前每次都可以&#xff0c;这次使用同样的配方&#xff0c;同样的姿势&#xff0c;为什么就不行了呢&#xff1f; 照例先…...

容器网络之Flannel

​ 第一个问题位置变化&#xff0c;往往是通过一个称为注册中心的地方统一管理的&#xff0c;这个是应用自己做的。当一个应用启动的时候&#xff0c;将自己所在环境的 IP 地址和端口&#xff0c;注册到注册中心指挥部&#xff0c;这样其他的应用请求它的时候&#xff0c;到指挥…...

SVM(下):如何进行乳腺癌检测?

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、…...

嵌入式Linux应用开发-第十五章具体单板的按键驱动程序

嵌入式Linux应用开发-第十五章具体单板的按键驱动程序 第十五章 具体单板的按键驱动程序(查询方式)15.1 GPIO操作回顾15.2 AM335X的按键驱动程序(查询方式)15.2.1 先看原理图确定引脚及操作方法15.2.2 再看芯片手册确定寄存器及操作方法15.2.3 编程15.2.3.1 程序框架15.2.3.2 硬…...

MySQL体系结构和四层架构介绍

MySQL体系结构图如下&#xff1a; 四层介绍 1. 连接层&#xff1a; 它的主要功能是处理客户端与MySQL服务器之间的连接(比如Java应用程序通过JDBC连接MySQL)。当客户端应用程序连接到MySQL服务器时&#xff0c;连接层对用户进行身份验证、建立安全连接并管理会话状态。它还处理…...

【产品运营】如何做好B端产品规划

产品规划是基于当下掌握的多维度信息&#xff0c;为追求特定目的&#xff0c;而制定的产品资源投入计划。 产品规划是基于当下掌握的多维度信息&#xff08;客户需求、市场趋势、竞争对手、竞争策略等&#xff09;&#xff0c;为追求特定目的&#xff08;商业增长、客户满意等&…...

ruoyi-启动

1 springboot 版本 git 地址 ruoyi-vue-pro: &#x1f525; 官方推荐 &#x1f525; RuoYi-Vue 全新 Pro 版本&#xff0c;优化重构所有功能。基于 Spring Boot MyBatis Plus Vue & Element 实现的后台管理系统 微信小程序&#xff0c;支持 RBAC 动态权限、数据权限…...

select完成服务器并发

服务器 #include <myhead.h>#define PORT 4399 //端口号 #define IP "192.168.0.191"//IP地址//键盘输入事件 int keybord_events(fd_set readfds); //客户端交互事件 int cliRcvSnd_events(int , struct sockaddr_in*, fd_set *, int *); //客户端连接事件 …...

初级篇—第四章聚合函数

文章目录 聚合函数介绍聚合函数介绍COUNT函数AVG和SUM函数MIN和MAX函数 GROUP BY语法基本使用使用多个列分组WITH ROLLUP HAVING基本使用WHERE和HAVING的对比开发中的选择 SELECT的执行过程查询的结构SQL 的执行原理 练习流程函数 聚合函数介绍 聚合函数作用于一组数据&#x…...

计算机图像处理-中值滤波

非线性滤波 非线性滤波是利用原始图像跟模版之间的一种逻辑关系得到结果&#xff0c;常用的非线性滤波方法有中值滤波和高斯双边滤波&#xff0c;分别对应cv2.medianBlur(src, ksize)方法和cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])方法。 …...

Golang中的包和模块设计

Go&#xff0c;也被称为Golang&#xff0c;是一种静态类型、编译型语言&#xff0c;因其简洁性和对并发编程的强大支持而受到开发者们的喜爱。Go编程的一个关键方面是其包和模块系统&#xff0c;它允许创建可重用、可维护和高效的代码。本博客文章将深入探讨在Go中设计包和模块…...

web:[极客大挑战 2019]Upload

题目 页面显示为一个上传&#xff0c;猜测上传一句话木马文件 先查看源代码看一下有没有有用的信息&#xff0c;说明要先上传图片&#xff0c;先尝试上传含有一句话木马的图片 构造payload <?php eval($_POST[123]);?> 上传后页面显示为&#xff0c;不能包含<&…...

ICMP差错包

ICMP报文分类 Type Code 描述 查询/差错 0-Echo响应 0 Echo响应报文 查询 3-目的不可达 0 目标网络不可达报文 差错 1 目标主机不可达报文 差错 2 目标协议不可达报文 差错 3 目标端口不可达报文 差错 4 要求分段并设置DF flag标志报文 差错 5 源路由…...

算法基础课第二部分

算法基础课 第四讲 数学知识AcWing1381. 阶乘(同余&#xff0c;因式分解) 质数AcWing 866. 质数的判定---试除法AcWing 868. 质数的判定---埃氏筛AcWing867. 分解质因数---试除法AcWing 197. 阶乘---分解质因数---埃式筛 约数AcWing 869. 求约数---试除法AcWing 870. 约数个数-…...

【数据结构】外部排序、多路平衡归并与败者树、置换-选择排序(生成初始归并段)、最佳归并树算法

目录 1、外部排序 1.1 基本概念 1.2 方法 2、多路平衡归并与败者树 2.1 K路平衡归并 2.2 败者树 3、置换-选择排序&#xff08;生成初始归并段&#xff09;​编辑 4、最佳归并树 4.1 理论基础​编辑 4.2 构造方法 ​编辑 5、各种排序算法的性质 1、外部排序 1.1 基本概…...

抽象工厂模式 创建性模式之五

在看这篇文章之前&#xff0c;请先看看“简单工厂模式”和“工厂方法模式”这两篇博文&#xff0c;会更有助于理解。我们现在已经知道&#xff0c;简单工厂模式就是用一个简单工厂去创建多个产品&#xff0c;工厂方法模式是每一个具体的工厂只生产一个具体的产品&#xff0c;然…...

servlet如何获取PUT和DELETE请求的参数

1. servlet为何不能获取PUT和DELETE请求的参数 Servlet的规范是POST的数据需要转给request.getParameter*()方法&#xff0c;没有规定PUT和DELETE请求也这么做 The Servlet spec requires form data to be available for HTTP POST but not for HTTP PUT or PATCH requests. T…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...