【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)
文章目录
- 引言
- 一、二维随机变量及分布
- 1.1 基本概念
- 1.2 联合分布函数的性质
- 二、二维离散型随机变量及分布
- 三、多维连续型随机变量及分布
- 3.1 基本概念
- 3.2 二维连续型随机变量的性质
- 写在最后
引言
隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。
一、二维随机变量及分布
1.1 基本概念
定义 1 —— 二维随机变量。设 X , Y X,Y X,Y 为定义于同一样本空间上的两个随机变量,称 ( X , Y ) (X,Y) (X,Y) 为二维随机变量。同理,也有 n n n 维随机变量的定义。
定义 2 —— 二维随机变量的分布函数。
(1)设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,对任意的 x , y ∈ R x,y\in R x,y∈R ,称 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{X≤x,Y≤y} 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合分布函数。
(2)称函数 F X ( x ) = P { X ≤ x } , F Y ( y ) = P { Y ≤ y } F_X(x)=P\{X\leq x\},F_Y(y)=P\{Y\leq y\} FX(x)=P{X≤x},FY(y)=P{Y≤y} 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。同理,有 n n n 维随机变量的联合分布函数以及边缘分布函数。
1.2 联合分布函数的性质
设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数,有如下性质:
(1) 0 ≤ F ( x , y ) ≤ 1 ; 0 \leq F(x,y) \leq 1; 0≤F(x,y)≤1;
(2) F ( x , y ) F(x,y) F(x,y) 对 x , y x,y x,y 都是单调不减函数;
(3) F ( x ) F(x) F(x) 关于 x , y x,y x,y 都是右连续;
(4) F ( − ∞ , − ∞ ) = 0 = F ( − ∞ , + ∞ ) = F ( + ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1. F(-\infty,-\infty)=0=F(-\infty,+\infty)=F(+\infty,-\infty)=0,F(+\infty,+\infty)=1. F(−∞,−∞)=0=F(−∞,+∞)=F(+∞,−∞)=0,F(+∞,+∞)=1.
其实和一维随机变量的分布函数的性质大差不差的,我也是从一维那里复制过来改了下的hhh。
以下是一些推论:
(1)设 { X ≤ x } = A , { Y ≤ y } = B \{X\leq x\}=A,\{Y\leq y\}=B {X≤x}=A,{Y≤y}=B ,则 F ( x , y ) = P ( A B ) , F X ( x ) = P ( A ) , F Y ( y ) = P ( B ) . F(x,y)=P(AB),F_X(x)=P(A),F_Y(y)=P(B). F(x,y)=P(AB),FX(x)=P(A),FY(y)=P(B). 即联合分布函数是要取交集。
(2) F X ( x ) = F ( x , + ∞ ) , F Y ( y ) = F ( + ∞ , y ) . F_X(x)=F(x,+\infty),F_Y(y)=F(+\infty,y). FX(x)=F(x,+∞),FY(y)=F(+∞,y). 即当一个变量限制在小于正无穷范围(这是肯定的),当然此时联合分布函数和边缘分布函数一致了。
(3)设 a 1 < a 2 , b 1 < b 2 a_1<a_2,b_1<b_2 a1<a2,b1<b2 ,则
P { a 1 < X ≤ a 2 , b 1 < Y ≤ b 2 } = P { a 1 < X ≤ a 2 , Y ≤ b 2 } − P { a 1 < X ≤ a 2 , Y ≤ b 1 } = ( P { X ≤ a 2 , Y ≤ b 2 } − P { X ≤ a 1 , Y ≤ b 2 } ) − ( P { X ≤ a 2 , Y ≤ b 1 } − P { X ≤ a 1 , Y ≤ b 1 } ) = F ( a 2 , b 2 ) − F ( a 1 , b 2 ) − F ( a 2 , b 1 ) + F ( a 1 , b 1 ) . P\{a_1 < X\leq a_2,b_1 < Y \leq b_2\}=P\{a_1 < X\leq a_2,Y\leq b_2\}-P\{a_1 < X\leq a_2,Y \leq b_1\}=(P\{X \leq a_2,Y\leq b_2\}-P\{X \leq a_1,Y\leq b_2\})-(P\{X \leq a_2,Y\leq b_1\}-P\{X\leq a_1,Y\leq b_1\})=\pmb{F(a_2,b_2)-F(a_1,b_2)-F(a_2,b_1)+F(a_1,b_1)}. P{a1<X≤a2,b1<Y≤b2}=P{a1<X≤a2,Y≤b2}−P{a1<X≤a2,Y≤b1}=(P{X≤a2,Y≤b2}−P{X≤a1,Y≤b2})−(P{X≤a2,Y≤b1}−P{X≤a1,Y≤b1})=F(a2,b2)−F(a1,b2)−F(a2,b1)+F(a1,b1).
二、二维离散型随机变量及分布
设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,若 ( X , Y ) (X,Y) (X,Y) 的可能取值为有限对或可列对,称 ( X , Y ) (X,Y) (X,Y) 为二维离散型随机变量。
设随机变量 ( X , Y ) (X,Y) (X,Y) 的可能取值为 ( x i , y j ) ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) (x_i,y_j)(i=1,2,\cdots,m;j=1,2,\cdots,n) (xi,yj)(i=1,2,⋯,m;j=1,2,⋯,n) ,称 P { X ≤ x i , Y ≤ y j } = p i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) , 或 P\{X\leq x_i,Y\leq y_j\}=p_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n),或 P{X≤xi,Y≤yj}=pij(i=1,2,⋯,m;j=1,2,⋯,n),或
为 ( X , Y ) (X,Y) (X,Y) 的联合分布律。其具有如下性质:
- p i j ≥ 0 ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) ; p_{ij}\geq 0(i=1,2,\cdots,m;j=1,2,\cdots,n); pij≥0(i=1,2,⋯,m;j=1,2,⋯,n);
- ∑ ∑ p i j = 1. \sum\sum p_{ij}=1. ∑∑pij=1.
由全概率公式,有 P { X = x i } = P { X = x i , y 1 } + ⋯ + P { X = x i , y n } = p i 1 + ⋯ + p i , n = p i ( i = 1 , 2 , ⋯ , m ) . P\{X=x_i\}=P\{X=x_i,y_1\}+\cdots+P\{X=x_i,y_n\}=p_{i1}+\cdots+p_{i,n}=p_i(i=1,2,\cdots,m). P{X=xi}=P{X=xi,y1}+⋯+P{X=xi,yn}=pi1+⋯+pi,n=pi(i=1,2,⋯,m). 同理,可以得到 P { Y = y i } P\{Y= y_i\} P{Y=yi} 。于是,联合分布律每一行每一列之和,即可构成两个随机变量的边缘分布律。
一般情况下,联合分布律和边缘分布律可以放在一张表格中:
三、多维连续型随机变量及分布
3.1 基本概念
设 ( X , Y ) (X,Y) (X,Y) 为二维随机变量,其分布函数为 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\leq x,Y\leq y\} F(x,y)=P{X≤x,Y≤y} ,若存在非负可积函数 f ( x , y ) f(x,y) f(x,y) ,使得 F ( x , y ) = ∫ − ∞ x d u ∫ − ∞ y f ( u , v ) d v F(x,y)=\int_{-\infty}^xdu\int_{-\infty}^yf(u,v)dv F(x,y)=∫−∞xdu∫−∞yf(u,v)dv ,称 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) 为 ( X , Y ) (X,Y) (X,Y) 的联合密度函数, F ( x , y ) F(x,y) F(x,y) 为联合分布函数。
称 f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y , f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x f_X(x)=\int_{-\infty}^\infty f(x,y)dy,f_Y(y)=\int_{-\infty}^\infty f(x,y)dx fX(x)=∫−∞∞f(x,y)dy,fY(y)=∫−∞∞f(x,y)dx 分别为随机变量 X , Y X,Y X,Y 的边缘密度函数。
称 F X ( x ) = ∫ − ∞ x f X ( x ) d x , F Y ( y ) = ∫ − ∞ y f Y ( y ) d y F_X(x)=\int_{-\infty}^xf_X(x)dx,F_Y(y)=\int_{-\infty}^yf_Y(y)dy FX(x)=∫−∞xfX(x)dx,FY(y)=∫−∞yfY(y)dy 分别为随机变量 X , Y X,Y X,Y 的边缘分布函数。
同理,以上结论可推广到 n n n 维。
3.2 二维连续型随机变量的性质
设 f ( x , y ) f(x,y) f(x,y) 为二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合密度函数,则
- f ( x , y ) ≥ 0 ; f(x,y)\geq 0; f(x,y)≥0;
- ∫ − ∞ ∞ d x ∫ − ∞ ∞ f ( x , y ) d y = 1. \int_{-\infty}^\infty dx\int_{-\infty}^\infty f(x,y)dy=1. ∫−∞∞dx∫−∞∞f(x,y)dy=1.
设 ( X , Y ) (X,Y) (X,Y) 为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y) 为其联合密度函数, F ( x , y ) F(x,y) F(x,y) 为其联合分布函数。若 F ( x , y ) F(x,y) F(x,y) 在某点 ( x , y ) (x,y) (x,y) 处二阶可偏导,有 f ( x , y ) = ∂ F ∂ x ∂ y ; f(x,y)=\frac{\partial F}{\partial x \partial y}; f(x,y)=∂x∂y∂F; 若在某点处二阶不可偏导,则 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 。
二阶联合分布函数一定连续,但不一定二阶可偏导。
写在最后
果然,先去看看多元微分和多重积分,看这个就较为轻松。
相关文章:
【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)
文章目录 引言一、二维随机变量及分布1.1 基本概念1.2 联合分布函数的性质 二、二维离散型随机变量及分布三、多维连续型随机变量及分布3.1 基本概念3.2 二维连续型随机变量的性质 写在最后 引言 隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个…...
cesium 雷达扫描 (波纹线性雷达扫描效果)
cesium 雷达扫描 (波纹线性雷达扫描效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1 <!DOCTYPE html> <html lang="en"><head>&l...
SLAM从入门到精通(tf的使用)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 在ros的机器人学习过程中,有一件事情是肯定少不了的。那就是坐标系的转换。其实这也很容易理解。假设有一个机器人,它有一个…...
python代码混淆与代码打包
0x00 背景 自己写的项目,又想保护源码,自己做个混淆是最方便的了。 0x01 实践 这里使用开源工具 GitHub - astrand/pyobfuscate: pyobfuscate,虽然git上才500多star,但是很好用。它的使用场景是混淆单个py文件。很多事物有开始就…...
Codeforces Round 899 (Div. 2)
Dashboard - Codeforces Round 899 (Div. 2) - Codeforces A. Increasing Sequence 由于a与b不相等,但b必须算出最小故可以从最小开始(1),故如果b a就将其值,使其改变即可,其余由于b1 < b2 < b3..…...
【 SuperPoint 】图像特征提取上的对比实验
1. SIFT,SuperPoint 都具有提取图片特征点,并且输出特征描述子的特性,本篇文章从特征点的提取数量,特征点的正确匹配数量来探索一下二者的优劣。 SuperPoint提取到的特征点数量要少一些,可以理解,我想原因大…...
Chrome获取RequestId
Chrome获取RequestId 参考:https://help.aliyun.com/zh/redis/how-do-i-obtain-the-id-of-a-request 在浏览器页面按下F12键,打开开发者工具页面; 在开发者工具页面,单击Network(网络); 在playload(载荷)窗口中找到目…...
cesium 雷达扫描 (线行扩散效果)
cesium 雷达扫描 (线行扩散效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1、 <!DOCTYPE html> <html lang="en"><head><<...
【React】React组件生命周期以及触发顺序(部分与vue做比较)
最近在学习React,发现其中的生命周期跟Vue有一些共同点,但也有比较明显的区别,并且执行顺序也值得讨论一下,于是总结了一些资料在这里,作为学习记录。 v17.0.1后生命周期图片 初始化阶段 由ReactDOM.render()触发 —…...
【C++】多线程的学习笔记——白话文版(bushi
目录 为什么要使用多线程 例子 代码 结果 首先要先学的库——thread库 thread的简介 thread的具体使用方法 基本变量的定义 注意(小重点) join函数的解读(重点) detach函数的解读 注意 关于vector和thread是联合使用 …...
图像处理: ImageKit.NET 3.0.10704 Crack
关于 ImageKit.NET3 100% 原生 .NET 图像处理组件。 ImageKit.NET 可让您快速轻松地向 .NET 应用程序添加图像处理功能。从 TWAIN 扫描仪和数码相机检索图像;加载和保存多种格式的图像文件;对图像应用图像滤镜和变换;在显示屏、平移窗口或缩略…...
K8S内容分发网络之集群,nginx,负载均衡,防火墙
K8S内容分发网络之集群,nginx,负载均衡,防火墙 一、Kubernetes 区域可采用 Kubeadm 方式进行安装。1.所有节点,关闭防火墙规则,关闭selinux,关闭swap交换2.修改主机名3.所有节点修改hosts文件4.调整内核参数…...
不愧是疑问解决神器!你强任你强
不愧是疑问解决神器!你强任你强👍👍👍 在过去,我习惯用这种方式来阅读书籍或文章:先快速浏览一遍,然后再进行复读,并最终总结所学的知识点。然而,长期以来,我…...
盛最多水的容器 接雨水【基础算法精讲 02】
盛雨水最多的容器 链接 : 11 盛最多水的容器 思路 : 双指针 : 1.对于两条确定的边界,l和r,取中间的线m与r组成容器,如果m的高度>l的高度,那么整个容器的长度会减小,如果低于l的高度,那么不仅高度可…...
WordPress主题开发( 十二)之—— 主题的functions.php
WordPress主题开发( 十)之—— 主题的functions.php 介绍使用functions.php vs. 插件创建和使用functions.php在functions.php中的常见用途1. 使用WordPress钩子2. 启用WordPress功能3. 定义可重用的函数4. 添加自动Feed链接5. 自定义导航菜单6. 文本域加…...
代码的工厂模式
概念: 代码的工厂模式是一种设计模式,用于创建对象实例而无需直接调用构造函数。它提供了一种更加灵活和可维护的方式来创建对象,尤其是在需要根据不同情况创建不同类型的对象时非常有用。工厂模式隐藏了对象的创建细节,使代码更…...
UE5.1编辑器拓展【一、脚本化资产行为,通知,弹窗,高效复制多个同样的资产】
目录 插件制作 添加新的类:AssetActionUtility 添加新的模块:EditorScriptingUtilities 路径了解 添加debug的头文件 代码【debug.h】内涵注释: 写函数 .h文件 .cpp文件 插件制作 首先第一步是做一个插件:…...
mac openssl 版本到底怎么回事 已解决
在mac 安装node多版本的时候,有可能把原有的 openssl1.1 版本 直接要再一次升级了,无奈的 php环境 编译器是 openssl 1.1 还是 3.0 ,今天来个底朝天的找问题。 brew search openssl 有安装 三个版本。 但是错误提示 是第二个版本。 brew …...
AWS】在EC2上创建root用户,并使用root用户登录
最近有项目需要使用AWS的EC2服务器; 在创建服务器实例之后发现,没有root用户,仔细阅读AWS EC2文档,发现默认是ec2-user用户; 那我们需要创建一个root用户 1.创建 root 用户 注意:必须要要在ec2-user用户下…...
9月24日回顾
1.微程序控制器的组成:指令译码器、微地址寄存器(输出和暂存控制信息),时序电路、最核心的部件是控制存储器(只读ROM组成)—用来存储微指令 2.突发读写:比如说突发地址为8,那么只需…...
Spring注册Bean系列--方法1:@Component
原文网址:Spring注册Bean系列--方法1:Component_IT利刃出鞘的博客-CSDN博客 简介 本文介绍Spring注册Bean的方法:Component。 注册Bean的方法我写了一个系列,见:Spring注册Bean(提供Bean)系列--方法大全_IT利刃出鞘…...
防火墙基础之H3C防火墙和三层交换机链路聚合的配置
H3C防火墙和三层交换机链路聚合的配置 原理概述: 防火墙(英语:Firewall)技术是通过有机结合各类用于安全管理与筛选的软件和硬件设备,帮助计算机网络于其内、外网之间构建一道相对隔绝的保护屏障,以保…...
管理类联考——数学——汇总篇——知识点突破——算数——记忆
文章目录 整体利用目录大纲/记忆宫殿目录大纲记忆宫殿 局部用各种方法数字编码法常见整除特点 歌决记忆法谐音记忆法理解记忆法比较记忆法转图像记忆法可视化法 整体利用目录大纲/记忆宫殿 目录大纲 记忆宫殿 局部用各种方法 学习记忆——数学篇——汇总——顺口溜记忆法谐…...
leetCode 455.分发饼干 贪心算法
455. 分发饼干 - 力扣(LeetCode) 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸&…...
vue3简易文字验证码
大神勿喷,简易版本,demo中可以用一下。 需要几个文字自己codelen 赋值 灵活点直接父组件传过去,可以自己改造 首先创建一个生成数字的js **mathcode.js**function MathCode(num){let str "寻寻觅觅冷冷清清凄凄惨惨戚戚乍暖还寒时候…...
Java 23种设计模式分类概括以及应用介绍
话不多说进入正题~ 创建型模式:5种 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供全局访问点,它的主要目的是限制类的实例化并确保所有代码都共享相同的实例。 – 应用:Runtime类、数据库连…...
运筹优化算法常用求解器汇总
运筹学从形成到发展,在此过程中积累的大量理论和方法在国防、能源、制造、交通、金融、通信等各个领域发挥着越来越重要的作用。我们在生产生活中遇到的很多实际问题,都可以通过运筹学所涉及的优化方法对其进行数学建模,表示为数学问题&#…...
字符串函数(一)
✨博客主页:小钱编程成长记 🎈博客专栏:进阶C语言 字符串函数(一) 0.前言1.求字符串长度的函数1.1 strlen(字符串长度) 2.长度不受限制的字符串函数2.1 strcpy(字符串拷贝࿰…...
Ubuntu 安装 Docker 的详细步骤
文章目录 简介1.更新2.安装必要的软件包2.1 基于阿里源 3.验证 Docker 安装是否成功4.安装后的一些常规设置及常用的命令4.1 启动 Docker4.2 Docker 在系统启动时自动运行4.3 运行一个 Hello World 镜像4.4 查看docker运行状态 欢迎来到这篇关于在 Ubuntu 上安装 Docker 的教程…...
使用Python进行App用户细分
App用户细分是根据用户与App的互动方式对用户进行分组的任务。它有助于找到保留用户,找到营销活动的用户群,并解决许多其他需要基于相似特征搜索用户的业务问题。这篇文章中,将带你完成使用Python进行机器学习的App用户细分任务。 App用户细…...
网站建设活动海报/成都seo排名
创造者的思维方式 我不知道人们是怎么回事,缺乏想象力还是怎么的,所以我跟其他人对话常常遇到类似的问题。 我:A其实不怎么好。 其他人:你说A不好,难道你要我用B? (对于政治爱好者,如…...
做网站制作较好的公司/成都疫情最新消息
一.简介 0. 页面的生命周期。 1. WebForm后台页面类继承于Page类,Page类实现了IHttpHandler接口。 2. 前台页面类继承于后台页面类。 3. 先调用PageLoad方法,再调用Render方法生成html代码。 二. 加密安全 互联网没有绝对的安全,登…...
专门做甜点的视频网站/河南seo和网络推广
创建线程 MsgThread : TMsgThread.Create(False) ; //创建并执行线程 MsgThread : TMsgThread.Create(True) ; //创建线程后挂起 constructor Create(CreateSuspended: Boolean); 中的参数CreateSuspended表示创建后是否挂起线程。 2)设置线程里没有设置循环执行的话…...
湖南人文科技学院怎么样/优化流程
一、年度查询查询 本年度的数据SELECT *FROM blog_articleWHERE year( FROM_UNIXTIME( BlogCreateTime ) ) year( curdate( ))二、查询季度数据查询数据附带季度数SELECT ArticleId, quarter( FROM_UNIXTIME( BlogCreateTime ) )FROM blog_article查询 本季度的数据SELECT *FR…...
一个人建网站赚钱/免费的网络推广有哪些
作者 | piglei来源 | 腾讯技术工程知乎专栏如果你用 Python 编程,那么你就无法避开异常,因为异常在这门语言里无处不在。打个比方,当你在脚本执行时按 ctrlc 退出,解释器就会产生一个 KeyboardInterrupt 异常。而 KeyError、 Valu…...
深圳网站关键词排名/网络优化工资一般多少
Linux操作系统相比于十年前的普及程度已经有了大大提高,但是由于其桌面操作系统上的可视化窗口操作模式并不像Windows操作系统那样直观、完美,对于一些刚接触Linux的人或者初学者来说入手还是有一定的难度,所以其发展并不是那么迅速。但是近年…...