当前位置: 首页 > news >正文

盛最多水的容器 接雨水【基础算法精讲 02】

盛雨水最多的容器

链接 : 


11 盛最多水的容器

思路 : 

双指针 :

1.对于两条确定的边界,l和r,取中间的线m与r组成容器,如果m的高度>l的高度,那么整个容器的长度会减小,如果低于l的高度,那么不仅高度可能会减小,长度也一定会减小;

2.取l=0,r=n-1,循环遍历答案即可;

代码 (c++): 

class Solution {
public:int maxArea(vector<int>& height) {int n = height.size();int i=0,j=n-1,ans=0;while(i < j){ans = height[i] < height[j] ? max(ans, (j - i) * height[i++]): max(ans, (j - i) * height[j--]); }return ans;}
};

代码(python) : 

class Solution:def maxArea(self, height: List[int]) -> int:ans = 0l = 0r = len(height)-1while l<r:s = (r-l)*min(height[l],height[r])ans = max(ans,s)if height[l] < height[r]:l += 1else :r -= 1return ans

接雨水

链接 : 

https://leetcode.cn/problems/trapping-rain-water/

思路 : 

假设每个位置都是一个宽度为一的桶;

对于每个位置能够存多少水,取决于左边和右边的最大高度;

法一 : 

用两个数组来表示 前缀 和 后缀的最大值;

详见代码一

时间复杂度  :  O(n)

空间复杂度  : O(n)

法二 : 

双指针 : 

取l=0,r=n-1;

一边遍历一边更新前缀的最大值pre_max 和 后缀的最大值suf_max!

时间复杂度  :  O(n)

空间复杂度  : O(1)

详见代码二

代码 :

代码一 : 

python :

class Solution:def trap(self, height: List[int]) -> int:n = len(height)#  前缀最大值数组fs = [0] * nfs[0] = height[0]for i in range(1,n):fs[i] = max(fs[i-1],height[i])# 后缀和最大值数组es = [0] * nes[-1] = height[n-1]for i in range(n-2,-1,-1):es[i] = max(es[i+1],height[i])ans = 0for h , f , e in zip(height,fs,es):ans += min(f,e)-hreturn ans

代码二 : 

python : 

class Solution:def trap(self, height: List[int]) -> int:n = len(height)l = 0r = n - 1ans = 0pre_max = 0suf_max = 0while l<=r:pre_max = max(pre_max,height[l])suf_max = max(suf_max,height[r])if pre_max < suf_max : ans += pre_max-height[l]l += 1else :ans += suf_max - height[r]r -= 1return ans

c++ : 

class Solution {
public:int trap(vector<int>& a) {int len = a.size();int lmax=a[0],rmax=a[len-1];int l=1,r=len-2;int ans=0;while(l<=r){if(lmax < rmax){ans += max(min(lmax,rmax)-a[l],0);lmax = max(lmax,a[l]);l++; }else{ans += max(min(lmax,rmax)-a[r],0);rmax = max(rmax,a[r]);r--;}}return ans;}
};

相关文章:

盛最多水的容器 接雨水【基础算法精讲 02】

盛雨水最多的容器 链接 : 11 盛最多水的容器 思路 : 双指针 &#xff1a; 1.对于两条确定的边界&#xff0c;l和r,取中间的线m与r组成容器&#xff0c;如果m的高度>l的高度&#xff0c;那么整个容器的长度会减小&#xff0c;如果低于l的高度&#xff0c;那么不仅高度可…...

WordPress主题开发( 十二)之—— 主题的functions.php

WordPress主题开发&#xff08; 十&#xff09;之—— 主题的functions.php 介绍使用functions.php vs. 插件创建和使用functions.php在functions.php中的常见用途1. 使用WordPress钩子2. 启用WordPress功能3. 定义可重用的函数4. 添加自动Feed链接5. 自定义导航菜单6. 文本域加…...

代码的工厂模式

概念&#xff1a; 代码的工厂模式是一种设计模式&#xff0c;用于创建对象实例而无需直接调用构造函数。它提供了一种更加灵活和可维护的方式来创建对象&#xff0c;尤其是在需要根据不同情况创建不同类型的对象时非常有用。工厂模式隐藏了对象的创建细节&#xff0c;使代码更…...

UE5.1编辑器拓展【一、脚本化资产行为,通知,弹窗,高效复制多个同样的资产】

目录​​​​​​​ 插件制作 添加新的类&#xff1a;AssetActionUtility 添加新的模块&#xff1a;EditorScriptingUtilities 路径了解 添加debug的头文件 代码【debug.h】内涵注释&#xff1a; 写函数 .h文件 .cpp文件 插件制作 首先第一步是做一个插件&#xff1a…...

mac openssl 版本到底怎么回事 已解决

在mac 安装node多版本的时候&#xff0c;有可能把原有的 openssl1.1 版本 直接要再一次升级了&#xff0c;无奈的 php环境 编译器是 openssl 1.1 还是 3.0 &#xff0c;今天来个底朝天的找问题。 brew search openssl 有安装 三个版本。 但是错误提示 是第二个版本。 brew …...

AWS】在EC2上创建root用户,并使用root用户登录

最近有项目需要使用AWS的EC2服务器&#xff1b; 在创建服务器实例之后发现&#xff0c;没有root用户&#xff0c;仔细阅读AWS EC2文档&#xff0c;发现默认是ec2-user用户&#xff1b; 那我们需要创建一个root用户 1.创建 root 用户 注意&#xff1a;必须要要在ec2-user用户下…...

9月24日回顾

1.微程序控制器的组成&#xff1a;指令译码器、微地址寄存器&#xff08;输出和暂存控制信息&#xff09;&#xff0c;时序电路、最核心的部件是控制存储器&#xff08;只读ROM组成&#xff09;—用来存储微指令 2.突发读写&#xff1a;比如说突发地址为8&#xff0c;那么只需…...

Spring注册Bean系列--方法1:@Component

原文网址&#xff1a;Spring注册Bean系列--方法1&#xff1a;Component_IT利刃出鞘的博客-CSDN博客 简介 本文介绍Spring注册Bean的方法&#xff1a;Component。 注册Bean的方法我写了一个系列&#xff0c;见&#xff1a;Spring注册Bean(提供Bean)系列--方法大全_IT利刃出鞘…...

防火墙基础之H3C防火墙和三层交换机链路聚合的配置

H3C防火墙和三层交换机链路聚合的配置 原理概述&#xff1a; 防火墙&#xff08;英语&#xff1a;Firewall&#xff09;技术是通过有机结合各类用于安全管理​与筛选的软件和硬件​设备&#xff0c;帮助计算机网络于其内、外网之间构建一道相对隔绝的保护屏障&#xff0c;以保…...

管理类联考——数学——汇总篇——知识点突破——算数——记忆

文章目录 整体利用目录大纲/记忆宫殿目录大纲记忆宫殿 局部用各种方法数字编码法常见整除特点 歌决记忆法谐音记忆法理解记忆法比较记忆法转图像记忆法可视化法 整体利用目录大纲/记忆宫殿 目录大纲 记忆宫殿 局部用各种方法 学习记忆——数学篇——汇总——顺口溜记忆法谐…...

leetCode 455.分发饼干 贪心算法

455. 分发饼干 - 力扣&#xff08;LeetCode&#xff09; 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸&…...

vue3简易文字验证码

大神勿喷&#xff0c;简易版本&#xff0c;demo中可以用一下。 需要几个文字自己codelen 赋值 灵活点直接父组件传过去&#xff0c;可以自己改造 首先创建一个生成数字的js **mathcode.js**function MathCode(num){let str "寻寻觅觅冷冷清清凄凄惨惨戚戚乍暖还寒时候…...

Java 23种设计模式分类概括以及应用介绍

话不多说进入正题~ 创建型模式&#xff1a;5种 单例模式&#xff08;Singleton Pattern&#xff09; 确保一个类只有一个实例&#xff0c;并提供全局访问点&#xff0c;它的主要目的是限制类的实例化并确保所有代码都共享相同的实例。 – 应用&#xff1a;Runtime类、数据库连…...

运筹优化算法常用求解器汇总

运筹学从形成到发展&#xff0c;在此过程中积累的大量理论和方法在国防、能源、制造、交通、金融、通信等各个领域发挥着越来越重要的作用。我们在生产生活中遇到的很多实际问题&#xff0c;都可以通过运筹学所涉及的优化方法对其进行数学建模&#xff0c;表示为数学问题&#…...

字符串函数(一)

✨博客主页&#xff1a;小钱编程成长记 &#x1f388;博客专栏&#xff1a;进阶C语言 字符串函数&#xff08;一&#xff09; 0.前言1.求字符串长度的函数1.1 strlen&#xff08;字符串长度&#xff09; 2.长度不受限制的字符串函数2.1 strcpy&#xff08;字符串拷贝&#xff0…...

Ubuntu 安装 Docker 的详细步骤

文章目录 简介1.更新2.安装必要的软件包2.1 基于阿里源 3.验证 Docker 安装是否成功4.安装后的一些常规设置及常用的命令4.1 启动 Docker4.2 Docker 在系统启动时自动运行4.3 运行一个 Hello World 镜像4.4 查看docker运行状态 欢迎来到这篇关于在 Ubuntu 上安装 Docker 的教程…...

使用Python进行App用户细分

App用户细分是根据用户与App的互动方式对用户进行分组的任务。它有助于找到保留用户&#xff0c;找到营销活动的用户群&#xff0c;并解决许多其他需要基于相似特征搜索用户的业务问题。这篇文章中&#xff0c;将带你完成使用Python进行机器学习的App用户细分任务。 App用户细…...

博弈论——伯特兰德寡头模型(Bertrand Model)

伯特兰德寡头模型(Bertrand Model) 0 引言 在前面几篇文章中&#xff0c;我们介绍了古诺模型(Cournot duopoly model)和斯塔克尔伯格模型(Stackelberg model) 博弈论——连续产量古诺模型(Cournot duopoly model) 博弈论——斯塔克尔伯格模型(Stackelberg model) 这两个模型…...

第一百六十回 SliverPadding组件

文章目录 概念介绍使用方法示例代码 我们在上一章回中介绍了SliverAppBar组件相关的内容&#xff0c;本章回中将介绍 SliverPadding组件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 概念介绍 我们在本章回中介绍的SliverPadding组件类似Pading组件&#xff0c;它主要用…...

Mapfree智驾方案,怎样实现成本可控?

整理|睿思 编辑|祥威 编者注&#xff1a;本文是HiEV出品的系列直播「智驾地图之变」第二期问答环节内容整理。 元戎启行副总裁刘轩与连线嘉宾奥维咨询董事合伙人张君毅、北汽研究总院智能网联中心专业总师林大洋、主持嘉宾周琳展开深度交流&#xff0c;并进行了答疑。 本期元…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器

拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件&#xff1a; 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

【Zephyr 系列 16】构建 BLE + LoRa 协同通信系统:网关转发与混合调度实战

🧠关键词:Zephyr、BLE、LoRa、混合通信、事件驱动、网关中继、低功耗调度 📌面向读者:希望将 BLE 和 LoRa 结合应用于资产追踪、环境监测、远程数据采集等场景的开发者 📊篇幅预计:5300+ 字 🧭 背景与需求 在许多 IoT 项目中,单一通信方式往往难以兼顾近场数据采集…...