Anderson-Darling正态性检验【重要统计工具】
Anderson-Darling正态性检验是一种用于确定数据集是否服从正态分布(也称为高斯分布或钟形曲线分布)的统计方法。它基于Anderson和Darling于1954年提出的检验统计量。该检验的基本原理和用途如下:
基本原理:
-
零假设(Null Hypothesis):Anderson-Darling检验的零假设是数据集来自于正态分布。这意味着,如果数据确实服从正态分布,则零假设成立。
-
计算Anderson-Darling统计量:检验首先计算Anderson-Darling统计量,这是一个衡量数据与正态分布拟合的度量。该统计量基于数据的观察值和正态分布的期望值之间的差异。
-
与临界值比较:接下来,Anderson-Darling统计量与临界值进行比较。临界值是根据所选的显著性水平(通常为5%)和数据集的大小计算得出的。如果Anderson-Darling统计量大于临界值,就意味着数据不太可能来自于正态分布。
-
做出决策:根据统计量与临界值的比较,可以决定是否拒绝零假设。如果统计量足够大,超过了临界值,通常会拒绝零假设,这意味着数据不服从正态分布。否则,不能拒绝零假设,这表示数据可能服从正态分布。
用途:
-
数据分布检查:Anderson-Darling检验可用于验证数据是否符合正态分布的假设。这对于许多统计分析和模型建立的前提非常重要,因为许多统计方法都要求数据服从正态分布。
-
质量控制:在制造业和质量控制中,Anderson-Darling检验可以用来检查生产过程是否产生了正态分布的输出。如果不是,可能需要采取措施来改进过程。
-
金融分析:在金融领域,正态分布假设经常用于分析资产价格变动。Anderson-Darling检验可以用来验证这种假设的有效性。
-
生物统计学:在生物统计学中,研究人员可能使用Anderson-Darling检验来确定生物数据是否遵循正态分布,例如基因表达数据或生物测量数据。
总之,Anderson-Darling正态性检验是一种重要的统计工具,可用于验证数据是否符合正态分布的假设,从而支持各种领域的分析和决策。
from scipy import stats
import numpy as np# 创建一个示例数据集
data = np.random.normal(0, 1, 100)# 执行Anderson-Darling正态性检验
result = stats.anderson(data)# 输出检验结果
print("Anderson-Darling统计量:", result.statistic)
print("临界值:", result.critical_values)
if result.statistic > result.critical_values[2]:print("数据不服从正态分布")
else:print("数据可能服从正态分布")print("--------------------------")
print("-检验的结果包括Anderson-Darling统计量、临界值、显著性水平以及适配结果,用于判断数据是否服从正态分布-")
print(result)
print(type(result))
print("--------------------------")
# Anderson-Darling统量
print("Anderson-Darling统计量:", result.statistic)# 临界值
print("临界值:", result.critical_values)# 显著性水平
print("显著性水平:", result.significance_level)# 适配结果
fit_result = result.fit_result
print("适配结果 params:", fit_result.params)
print("适配结果 success:", fit_result.success)
print("适配结果 message:", fit_result.message)
Anderson-Darling统计量: 0.8746794117758157
临界值: [0.555 0.632 0.759 0.885 1.053]
数据不服从正态分布
--------------------------
----检验的结果包括Anderson-Darling统计量、临界值、显著性水平以及适配结果,用于判断数据是否服从正态分布-----
AndersonResult(statistic=0.8746794117758157, critical_values=array([0.555, 0.632, 0.759, 0.885, 1.053]), significance_level=array([15. , 10. , 5. , 2.5, 1. ]), fit_result= params: FitParams(loc=-0.00916569417046395, scale=1.012016300795819)
success: True
message: '`anderson` successfully fit the distribution to the data.')
<class 'scipy.stats._morestats.AndersonResult'>
--------------------------
Anderson-Darling统计量: 0.8746794117758157
临界值: [0.555 0.632 0.759 0.885 1.053]
显著性水平: [15. 10. 5. 2.5 1. ]
适配结果 params: FitParams(loc=-0.00916569417046395, scale=1.012016300795819)
适配结果 success: True
适配结果 message: `anderson` successfully fit the distribution to the data.
[Finished in 5.0s]
相关文章:
Anderson-Darling正态性检验【重要统计工具】
Anderson-Darling正态性检验是一种用于确定数据集是否服从正态分布(也称为高斯分布或钟形曲线分布)的统计方法。它基于Anderson和Darling于1954年提出的检验统计量。该检验的基本原理和用途如下: 基本原理: 零假设(Nu…...
Ubuntu基于Docker快速配置GDAL的Python、C++环境
本文介绍在Linux的Ubuntu操作系统中,基于Docker快速配置Python、C等不同编程语言均可用的地理数据处理库GDAL的方法。 首先,我们访问GDAL库的Docker镜像官方网站(https://github.com/OSGeo/gdal/tree/master/docker)。其中&#x…...
<C++> 哈希表模拟实现STL_unordered_set/map
哈希表模板参数的控制 首先需要明确的是,unordered_set是K模型的容器,而unordered_map是KV模型的容器。 要想只用一份哈希表代码同时封装出K模型和KV模型的容器,我们必定要对哈希表的模板参数进行控制。 为了与原哈希表的模板参数进行区分…...
【数据结构与算法】通过双向链表和HashMap实现LRU缓存 详解
这个双向链表采用的是有伪头节点和伪尾节点的 与上一篇文章中单链表的实现不同,区别于在实例化这个链表时就初始化了的伪头节点和伪尾节点,并相互指向,在第一次添加节点时,不需要再考虑空指针指向问题了。 /*** 通过链表与HashMa…...
MySQL的内置函数
文章目录 1. 聚合函数2. group by子句的使用3. 日期函数4. 字符串函5. 数学函数6. 其它函数 1. 聚合函数 COUNT([DISTINCT] expr) 返回查询到的数据的数量 用SELECT COUNT(*) FROM students或者SELECT COUNT(1) FROM students也能查询总个数。 统计本次考试的数学成绩分数去…...
数据结构与算法-(7)---栈的应用-(3)表达式转换
🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如…...
Lilliefors正态性检验(一种非参数统计方法)
Lilliefors检验(也称为Kolmogorov-Smirnov-Lilliefors检验)是一种用于检验数据是否符合正态分布的统计检验方法,它是Kolmogorov-Smirnov检验的一种变体,专门用于小样本情况。与K-S检验不同,Lilliefors检验不需要假定数…...
【云原生】配置Kubernetes CronJob自动备份MySQL数据库(单机版)
文章目录 每天自动备份数据库MySQL【云原生】配置Kubernetes CronJob自动备份Clickhouse数据库 每天自动备份数据库 MySQL 引用镜像:databack/mysql-backup,使用文档:https://hub.docker.com/r/databack/mysql-backup 测试、开发环境:每天0点40分执行全库备份操作,备份文…...
基于PSO算法的功率角摆动曲线优化研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
数论知识点总结(一)
文章目录 目录 文章目录 前言 一、数论有哪些 二、题法混讲 1.素数判断,质数,筛法 2.最大公约数和最小公倍数 3.快速幂 4.约数 前言 现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣! 一、数论有哪些 数论 原根,素数判断,质数,筛法最大公约数…...
知识分享 钡铼网关功能介绍:使用SSLTLS 加密,保证MQTT通信安全
背景 为了使不同的设备或系统能够相互通信,让旧有系统和新的系统可以集成,通信更加灵活和可靠。以及将数据从不同的来源收集并传输到不同的目的地,实现数据的集中管理和分发。 通信网关完美克服了这一难题,485或者网口的设备能通过…...
asp.net core mvc区域路由
ASP.NET Core 区域路由(Area Routing)是一种将应用程序中的路由划分为多个区域的方式,类似于 MVC 的控制器和视图的区域划分。区域路由可以帮助开发人员更好地组织应用程序的代码和路由,并使其更易于维护。 要使用区域路由&#…...
KNN(下):数据分析 | 数据挖掘 | 十大算法之一
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…...
Servlet开发-session和cookie理解案例-登录页面
项目展示 进入登录页面,输入正确的用户名和密码以后会自动跳到主页 登录成功以后打印用户名以及上次登录的时间,如果浏览器和客户端都保存有上次登录的信息,则不需要登录就可以进入主页 编码思路 1.首先提供一个登录的前端页面&…...
Polygon Miden:扩展以太坊功能集的ZK-optimized rollup
1. 引言 Polygon Miden定位为zkVM,定于2023年Q4上公开测试网。 zk、zkVM、zkEVM及其未来中指出,当前主要有3种类型的zkVM,括号内为其相应的指令集: mainstream(WASM, RISC-V)EVM(EVM bytecod…...
[题]宝物筛选 #单调队列优化
五、宝物筛选(洛谷P1776) 题目链接 好家伙,找到了一个之前学习多重背包优化时的错误…… 之前记的笔记还是很有用的…… #include<bits/stdc.h> using namespace std; const int N 1e5 10; int f[N]; int n, m; int v, w, s; int l…...
.NET的键盘Hook管理类,用于禁用键盘输入和切换
一、MyHook帮助类 此类需要编写指定屏蔽的按键,灵活性差。 using System; using System.Runtime.InteropServices; using System.Diagnostics; using System.Windows.Forms; using Microsoft.Win32;namespace MyHookClass {/// <summary>/// 类一/// </su…...
Anaconda Jupyter
🙌秋名山码民的主页 😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪 🎉欢迎关注🔎点赞👍收藏⭐️留言📝 获取源码,添加WX 目录 前言An…...
Unity中Shader的前向渲染路径ForwardRenderingPath
文章目录 前言一、前向渲染路径的特点二、渲染方式1、逐像素(效果最好)2、逐顶点(效果次之)3、SH球谐(效果最差) 三、Unity中对灯光设置 后,自动选择对应的渲染方式1、ForwardBase仅用于一个逐像素的平行灯,以及所有的逐顶点与SH2、ForwardAdd用于其他所…...
简历项目优化关键方法论-START
START方法论是非常著名的面试法则,经常被面试官使用的工具 Situation:情况、事情、项目需求是在什么情况下发生Task:任务,你负责的做的是什么Action:动作,针对这样的情况分析,你采用了什么行动方式Result:结果,在这样…...
TensorFlow学习1:使用官方模型进行图片分类
前言 人工智能以后会越来越发达,趁着现在简单学习一下。机器学习框架有很多,这里觉得学习谷歌的 TensorFlow,谷歌的技术还是很有保证的,另外TensorFlow 的中文文档真的很友好。 文档: https://tensorflow.google.cn/…...
C++ 并发编程实战 第八章 设计并发代码 一
目录 8.1 在线程间切分任务 8.1.1 先在线程间切分数据,再开始处理 8.1.2 以递归方式划分数据 8.1.3 依据工作类别划分任务 借多线程分离关注点需防范两大风险 在线程间按流程划分任务 8.2 影响并发性能的因素 8.2.1 处理器的数量 8.2.2 数据竞争和缓存兵乓…...
设计模式8、装饰者模式 Decorator
解释说明:动态地给一个对象增加一些额外的职责。就扩展功能而言,装饰模式提供了一种比使用子类更加灵活的替代方案 抽象构件(Component):定义一个抽象接口以规范准备收附加责任的对象 具体构件(ConcreteCom…...
抖音开放平台第三方代小程序开发,一整套流程
大家好,我是小悟 抖音小程序第三方平台开发着力于解决抖音生态体系内的小程序管理问题,一套模板,随处部署。能尽可能地减少服务商的开发成本,服务商只用开发一套小程序代码作为模板就可以快速批量的孵化出大量的商家小程序。 第…...
Flutter笔记:滚动之-无限滚动与动态加载的实现(GetX简单状态管理版)
Flutter笔记 无限滚动与动态加载的实现(GeX简单状态管理版) 作者:李俊才 (jcLee95):https://blog.csdn.net/qq_28550263 邮箱 :291148484163.com 本文地址:https://blog.csdn.net/qq…...
前端架构师之02_ES6_高级
1 类和继承 1.1 class类 JavaScript 语言中,生成实例对象的传统方法是通过构造函数。 // ES5 创建对象 // 创建一个类,用户名 密码 function User(name,pass){// 添加属性this.name name;this.pass pass; } // 用 原型 添加方法 User.prototype.sho…...
VScode多文件编译/调试配置
之前都是在Visual Studio写C/C,最近想换到VScode,折腾半天把launch.json和tasks.json配好了(虽然不懂为什么,但确实能用了),在此做个记录。 参考资料:1,2,3 环境&#…...
K折交叉验证——cross_val_score函数使用说明
在机器学习中,许多算法中多个超参数,超参数的取值不同会导致结果差异很大,如何确定最优的超参数?此时就需要进行交叉验证的方法,sklearn给我们提供了相应的cross_val_score函数,可对数据集进行交叉验证划分…...
2023.09.30使用golang1.18编译Hel10-Web/Databasetools的windows版
#Go 1.21新增的 log/slog 完美解决了以上问题,并且带来了很多其他很实用的特性。 本次编译不使用log/slog 包 su - echo $GOPATH ;echo $GOROOT; cd /tmp; busybox wget --no-check-certificate https://go.dev/dl/go1.18.linux-amd64.tar.gz;\ which tar&&am…...
React简介
react作为前端主流框架之一,因其语法接近原生JavaScript语法而广受欢迎。其生态丰富,常用的就有react-router、react-redux等插件,还有与其匹配的UI组件库antd。而且其还有用于移动端开发的react-native库,因此,react值…...
中企做的网站/seo资源咨询
unknownhostexception错误解决方案参考文章: (1)unknownhostexception错误解决方案 (2)https://www.cnblogs.com/s-d-g/p/9439119.html (3)https://www.codeprj.com/blog/90078f1.html 备忘…...
制作网页图片/windows优化大师官方免费
1、什么叫WebInternet是一个连接世界上计算机的物理网络Web是建立在Internet上的其中一种服务(Service)Web是Internet上多种不同的服务之一,其他还包括E-mail,流媒体,FTP等2、Web工作原理作为一种服务,Web定义两个方面:…...
dw cs4怎么做网站/百度网盘app免费下载安装老版本
很多人都学习了网络技术, 里面有许许多的知识点。包括cisco的路由交换技术,linux系统的各种服务, windows系统的各种服务等等。一想到划分 / 隔离必然要考虑vlan ?vlan多了,就上三层交换机 ?难道控制上网行为就acl ?防火墙就会想到ISA ?我想说的是书中所涉及的…...
做网站还是做app好/营销推广投放平台
4.2.2.5.3. range限制条件的优化(in与>,<在index命中上的区别等) 在SQL中经常会出现多个range(范围)限制条件。这里指的范围限制条件包括>,<,between等。这些范围限制条件会对相应的索引使用造成影响。正常情况下,即使将这些范围条件调到where子句中的最…...
恩施做网站多少钱/福州关键词排名优化
下午事情少,顺便把昨天的爬虫练习下,平时都看磊的技术博哥(干货比较多);就试试先写一个简单的爬虫,后期有机会再完善,做整站和多线程。1、观察爬取的URL:通过观察我们发现,在首页部分包含有文章…...
怎样建设网站赚钱/爱站网关键词挖掘工具站长工具
$this -> view disableLevel(\Phalcon\Mvc\View::LEVEL_ACTION_VIEW);一行代码搞定!转载于:https://blog.51cto.com/ivendor/1559295...