当前位置: 首页 > news >正文

BI神器Power Query(25)-- 使用PQ实现表格多列转换(1/3)

实例需求:原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中,att1、att3、att5为一组,att2、att3、att6为另一组,数据如下所示。

更新表格数据

原始数据表:

Col1Col2Att1Att2Att3Att4Att5Att6
AAADDDXOalphadelta100400
BBBEEEYPbetavega200500

结果数据表:

Col1Col2cn1cn3cn3
AAADDDXalpha100
AAADDDOdelta400
BBBEEEYbeta200
BBBEEEPvega500

示例代码

letSource = Excel.CurrentWorkbook(){[Name="Table1"]}[Content],add_index = Table.AddIndexColumn(Source, "Index", 1, 1, Int64.Type),tab1 = Table.RemoveColumns(add_index,{"Att2", "Att4", "Att6"}),rename_tab1 = Table.RenameColumns(tab1,{{"Att1", "cn1"}, {"Att3", "cn2"}, {"Att5", "cn3"}}),tab2 = Table.RemoveColumns(add_index,{"Att1", "Att3", "Att5"}),rename_tab2 = Table.RenameColumns(tab2,{{"Att2", "cn1"}, {"Att4", "cn2"}, {"Att6", "cn3"}}),combine_tab = Table.Combine({rename_tab1, rename_tab2}),sort_row = Table.Sort(combine_tab,{{"Index", Order.Ascending}}),output = Table.RemoveColumns(sort_row,{"Index"})
inoutput

代码解析:
第2行代码加载源表格,表格名称为Table1。
第3行代码添加索引列,用于确保输出结果表的数据顺序于原始表保持一致。
第4行代码移除多余列,保留部分属性列。
第5行代码重命名属性列名称。
第6~7行代码功能类似,用于提取第二组属性。
第8行代码合并两个子表。
第9行代码按索引列排序。
第1行代码移除索引列。
第12行代码输出最终结果表。

转换结果如下图所示。

在这里插入图片描述


部分代码也可以简化为如下,但是处理逻辑与上面代码相同,上述代码分步处理更容易理解。

letSource = Excel.CurrentWorkbook(){[Name="Table1"]}[Content],add_index = Table.AddIndexColumn(Source, "Index", 1, 1, Int64.Type),combine_tab = Table.Combine({Table.RenameColumns(add_index[[Col1],[Col2],[Att1],[Att3],[Att5],[Index]],{{"Att1","cn1"},{"Att3","cn2"},{"Att5","cn3"}}),Table.RenameColumns(add_index[[Col1],[Col2],[Att2],[Att4],[Att6],[Index]],{{"Att2","cn1"},{"Att4","cn2"},{"Att6","cn3"}})}),sort_row = Table.Sort(combine_tab,{{"Index", Order.Ascending}}),output = Table.RemoveColumns(sort_row,{"Index"})
inoutput

总结:
Power Query提供了丰富的表处理功能,可以方便地实现表格列的转换需求。

相关文章:

BI神器Power Query(25)-- 使用PQ实现表格多列转换(1/3)

实例需求:原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中,att1、att3、att5为一组,att2、att3、att6为另一组,数据如下所示。 更新表格数据 原始数据表: Col1Col2Att1Att2Att3Att4Att5Att6AAADD…...

windows系统一键开启和关闭虚拟化

说明 跟虚拟化相关的三个程序 一键开启脚本 REM 开启 Hyper-V 服务 pushd "%~dp0"dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txtfor /f %%i in (findstr /i . hyper-v.txt 2^>nul) do dism /online /norestart /add-package:"%Sy…...

NSSCTF做题(5)

[NSSCTF 2022 Spring Recruit]babyphp 代码审计 if(isset($_POST[a])&&!preg_match(/[0-9]/,$_POST[a])&&intval($_POST[a])){ if(isset($_POST[b1])&&$_POST[b2]){ if($_POST[b1]!$_POST[b2]&&md5($_POST[b1])md5($_POST[b2])){…...

java基础题——二维数组的基本应用

1.设计程序按照各个学生的 Java 成绩进行排序 ( 降序 ) 2.设计程序,根据学生总成绩进行排序(降序排列),并输出学生姓名、每门课程的名称和该学生的成绩、该学生的总成绩 public static void main(String[] args) {String[] names {"安琪拉",…...

Leetcode 2119.反转两次的数字

反转 一个整数意味着倒置它的所有位。 例如,反转 2021 得到 1202 。反转 12300 得到 321 ,不保留前导零 。 给你一个整数 num ,反转 num 得到 reversed1 ,接着反转 reversed1 得到 reversed2 。如果 reversed2 等于 num &#x…...

BI神器Power Query(27)-- 使用PQ实现表格多列转换(3/3)

实例需求:原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中,att1、att3、att5为一组,att2、att3、att6为另一组,数据如下所示。 更新表格数据 原始数据表: Col1Col2Att1Att2Att3Att4Att5Att6AAADD…...

VUE3照本宣科——认识VUE3

VUE3照本宣科——认识VUE3 前言一、命令创建项目1.中文官网2.菜鸟教程 二、VUE3项目目录结构1.public2.src(1)assets(2)components 3. .eslintrc.cjs4. .gitignore5. .prettierrc.json6.index.html7.package.json8.README.md9.vit…...

《计算机视觉中的多视图几何》笔记(12)

12 Structure Computation 本章讲述如何在已知基本矩阵 F F F和两幅图像中若干对对应点 x ↔ x ′ x \leftrightarrow x x↔x′的情况下计算三维空间点 X X X的位置。 文章目录 12 Structure Computation12.1 Problem statement12.2 Linear triangulation methods12.3 Geomet…...

TFT LCD刷新原理及LCD时序参数总结(LCD时序,写的挺好)

cd工作原理目前不了解,日后会在博客中添加这一部分的内容。 1.LCD工作原理[1] 我对LCD的工作原理也仅仅处在了解的地步,下面基于NXP公司对LCD工作原理介绍的ppt来学习一下。 LCD(liquid crystal display,液晶显示屏) 是由液晶段阵列组成,当…...

基于Java的电影院购票系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding)有保障的售后福利 代码参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…...

Linux基础指令(六)

目录 前言1. man 指令2. date 指令3. cal 指令4. bc 指令5. uname 指令结语: 前言 欢迎各位伙伴来到学习 Linux 指令的 第六天!!! 在上一篇文章 Linux基本指令(五) 中,我们通过一段故事线,带大家感性的了…...

Anderson-Darling正态性检验【重要统计工具】

Anderson-Darling正态性检验是一种用于确定数据集是否服从正态分布(也称为高斯分布或钟形曲线分布)的统计方法。它基于Anderson和Darling于1954年提出的检验统计量。该检验的基本原理和用途如下: 基本原理: 零假设(Nu…...

Ubuntu基于Docker快速配置GDAL的Python、C++环境

本文介绍在Linux的Ubuntu操作系统中,基于Docker快速配置Python、C等不同编程语言均可用的地理数据处理库GDAL的方法。 首先,我们访问GDAL库的Docker镜像官方网站(https://github.com/OSGeo/gdal/tree/master/docker)。其中&#x…...

<C++> 哈希表模拟实现STL_unordered_set/map

哈希表模板参数的控制 首先需要明确的是,unordered_set是K模型的容器,而unordered_map是KV模型的容器。 要想只用一份哈希表代码同时封装出K模型和KV模型的容器,我们必定要对哈希表的模板参数进行控制。 为了与原哈希表的模板参数进行区分…...

【数据结构与算法】通过双向链表和HashMap实现LRU缓存 详解

这个双向链表采用的是有伪头节点和伪尾节点的 与上一篇文章中单链表的实现不同,区别于在实例化这个链表时就初始化了的伪头节点和伪尾节点,并相互指向,在第一次添加节点时,不需要再考虑空指针指向问题了。 /*** 通过链表与HashMa…...

MySQL的内置函数

文章目录 1. 聚合函数2. group by子句的使用3. 日期函数4. 字符串函5. 数学函数6. 其它函数 1. 聚合函数 COUNT([DISTINCT] expr) 返回查询到的数据的数量 用SELECT COUNT(*) FROM students或者SELECT COUNT(1) FROM students也能查询总个数。 统计本次考试的数学成绩分数去…...

数据结构与算法-(7)---栈的应用-(3)表达式转换

🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如…...

Lilliefors正态性检验(一种非参数统计方法)

Lilliefors检验(也称为Kolmogorov-Smirnov-Lilliefors检验)是一种用于检验数据是否符合正态分布的统计检验方法,它是Kolmogorov-Smirnov检验的一种变体,专门用于小样本情况。与K-S检验不同,Lilliefors检验不需要假定数…...

【云原生】配置Kubernetes CronJob自动备份MySQL数据库(单机版)

文章目录 每天自动备份数据库MySQL【云原生】配置Kubernetes CronJob自动备份Clickhouse数据库 每天自动备份数据库 MySQL 引用镜像:databack/mysql-backup,使用文档:https://hub.docker.com/r/databack/mysql-backup 测试、开发环境:每天0点40分执行全库备份操作,备份文…...

基于PSO算法的功率角摆动曲线优化研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

数论知识点总结(一)

文章目录 目录 文章目录 前言 一、数论有哪些 二、题法混讲 1.素数判断,质数,筛法 2.最大公约数和最小公倍数 3.快速幂 4.约数 前言 现在针对CSP-J/S组的第一题主要都是数论,换句话说,持数论之剑,可行天下矣! 一、数论有哪些 数论 原根,素数判断,质数,筛法最大公约数…...

知识分享 钡铼网关功能介绍:使用SSLTLS 加密,保证MQTT通信安全

背景 为了使不同的设备或系统能够相互通信,让旧有系统和新的系统可以集成,通信更加灵活和可靠。以及将数据从不同的来源收集并传输到不同的目的地,实现数据的集中管理和分发。 通信网关完美克服了这一难题,485或者网口的设备能通过…...

asp.net core mvc区域路由

ASP.NET Core 区域路由(Area Routing)是一种将应用程序中的路由划分为多个区域的方式,类似于 MVC 的控制器和视图的区域划分。区域路由可以帮助开发人员更好地组织应用程序的代码和路由,并使其更易于维护。 要使用区域路由&#…...

KNN(下):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…...

Servlet开发-session和cookie理解案例-登录页面

项目展示 进入登录页面,输入正确的用户名和密码以后会自动跳到主页 登录成功以后打印用户名以及上次登录的时间,如果浏览器和客户端都保存有上次登录的信息,则不需要登录就可以进入主页 编码思路 1.首先提供一个登录的前端页面&…...

Polygon Miden:扩展以太坊功能集的ZK-optimized rollup

1. 引言 Polygon Miden定位为zkVM,定于2023年Q4上公开测试网。 zk、zkVM、zkEVM及其未来中指出,当前主要有3种类型的zkVM,括号内为其相应的指令集: mainstream(WASM, RISC-V)EVM(EVM bytecod…...

[题]宝物筛选 #单调队列优化

五、宝物筛选&#xff08;洛谷P1776&#xff09; 题目链接 好家伙&#xff0c;找到了一个之前学习多重背包优化时的错误…… 之前记的笔记还是很有用的…… #include<bits/stdc.h> using namespace std; const int N 1e5 10; int f[N]; int n, m; int v, w, s; int l…...

.NET的键盘Hook管理类,用于禁用键盘输入和切换

一、MyHook帮助类 此类需要编写指定屏蔽的按键&#xff0c;灵活性差。 using System; using System.Runtime.InteropServices; using System.Diagnostics; using System.Windows.Forms; using Microsoft.Win32;namespace MyHookClass {/// <summary>/// 类一/// </su…...

Anaconda Jupyter

&#x1f64c;秋名山码民的主页 &#x1f602;oi退役选手&#xff0c;Java、大数据、单片机、IoT均有所涉猎&#xff0c;热爱技术&#xff0c;技术无罪 &#x1f389;欢迎关注&#x1f50e;点赞&#x1f44d;收藏⭐️留言&#x1f4dd; 获取源码&#xff0c;添加WX 目录 前言An…...

Unity中Shader的前向渲染路径ForwardRenderingPath

文章目录 前言一、前向渲染路径的特点二、渲染方式1、逐像素(效果最好)2、逐顶点(效果次之)3、SH球谐(效果最差) 三、Unity中对灯光设置 后&#xff0c;自动选择对应的渲染方式1、ForwardBase仅用于一个逐像素的平行灯&#xff0c;以及所有的逐顶点与SH2、ForwardAdd用于其他所…...

电脑如何做ppt模板下载网站/杭州推广平台有哪些

数位DP 问题 求区间[L,R][L, R][L,R]中满足条件的数有多少个&#xff0c; 0≤L≤R0 \le L \le R0≤L≤R&#xff0c;该条件与数位有关&#xff0c;比如不包含数字444。 思路 考虑函数cal(n)cal(n)cal(n)表示区间[0,n][0, n][0,n]中满足条件的数的个数&#xff0c;那么区间[…...

万网 网站/网络热词的利弊

yii默认提供获取$_GET和$_POST值的方法,以及请求类型判断,url地址参数信息获取等.使用起来很方便,当然系统$_GET $_POST还是可以用,注:不能相信任何用户提交的任何参数值,以免出现安全问题, 如get参数id5, 用户访问的时候id不一定等于5GET POST请求参数获取要获取请求参数&…...

手机网站关闭窗口代码/排名优化seo公司

首先说一下什么是依赖循环&#xff0c;比如&#xff1a;我现在有一个ServiceA需要调用ServiceB的方法&#xff0c;那么ServiceA就依赖于ServiceB&#xff0c;那在ServiceB中再调用ServiceA的方法&#xff0c;就形成了循环依赖。Spring在初始化bean的时候就不知道先初始化哪个be…...

门户网站建设方案/搜索引擎seo优化

Flink基础知识点博文汇总&#xff1a; Flink&#xff08;1&#xff09;&#xff1a;Flink概述Flink&#xff08;2&#xff09;&#xff1a;为什么选择FlinkFlink&#xff08;3&#xff09;&#xff1a;Flink安装部署之Local本地模式Flink&#xff08;4&#xff09;&#xff1…...

佛山高端外贸网站建设/短视频seo营销系统

《Redis中的GETBIT和SETBIT(转载)》 《redis 用setbit(bitmap)统计活跃用户》...

公众号外链网站怎么做/广告联盟平台哪个好

一、安装环境 [1] windows10操作系统物理机 [2] VMware Workstation 软件&#xff08;可以在网上下载&#xff09; [3] CentOS6.9镜像文件&#xff08;其他版本都大同小异&#xff0c;这里以CentOS6.9为例&#xff09; [4] Cnetos6.9镜像文件地址https://pan.baidu.com/s/1hsZ…...