Kolmogorov-Smirnov正态性检验
Kolmogorov-Smirnov正态性检验是一种统计方法,用于检验数据集是否服从正态分布。其基本原理和用途如下:
基本原理:
- 假设检验:Kolmogorov-Smirnov检验基于一个假设,即待检验的数据集服从特定的理论正态分布。
- 计算累积分布函数:将待检验的数据集按照数值大小排序,然后计算其经验累积分布函数(ECDF)。
- 计算理论正态分布的累积分布函数:根据所假设的正态分布的参数(均值和标准差),计算理论正态分布的累积分布函数。
- 比较两个累积分布函数:通过比较待检验数据集的ECDF和理论正态分布的累积分布函数,计算出一个统计量,称为K-S统计量(Kolmogorov-Smirnov统计量)。
- 判断是否拒绝假设:K-S统计量与一个临界值进行比较,如果K-S统计量大于临界值,则可以拒绝假设,表明数据集不服从正态分布。
用途:
- 正态性检验:最常见的用途是检验数据是否服从正态分布。这对于许多统计方法的应用以及假设检验的有效性具有重要意义。
- 数据预处理:在一些统计分析中,要求数据服从正态分布,因此可以在分析之前使用K-S检验来验证数据的正态性,并采取适当的数据转换或纠正措施。
- 质量控制:在质量控制和生产过程中,可以使用K-S检验来检验观测值是否与预期的正态分布相符,以检测异常或问题。
- 金融分析:在金融领域,正态性检验用于分析股价、收益率等金融数据是否服从正态分布,从而影响投资决策。
需要注意的是,Kolmogorov-Smirnov检验对样本量的要求较高,当样本较小时可能不太适用。此外,它对于检测偏离正态分布的具体方式并不敏感,因此在实际应用中,还需要结合其他统计方法和图形分析来综合评估数据的分布情况。
Kolmogorov-Smirnov(K-S)检验对样本量的要求较高,特别是在检验数据是否服从正态分布时。这是因为K-S检验的效力(统计检验的能力)与样本大小有关,较大的样本容易检测到分布的偏差,而较小的样本则可能导致不稳定的结果。
一般来说,当样本容量较小时(通常少于30个数据点),K-S检验可能不够强大,难以明确确定数据的分布情况。在这种情况下,可能需要考虑使用其他正态性检验方法,如Shapiro-Wilk检验或Anderson-Darling检验,它们对小样本的正态性检验效果更好。
总之,确保选择适合样本大小的统计检验方法非常重要,以确保检验的可靠性和准确性。在实际应用中,还应该结合数据的分布特点、领域知识和可视化分析来综合评估数据的正态性。
import numpy as np
from scipy import stats# 生成示例数据,这里使用正态分布生成的数据
np.random.seed(0)
data = np.random.normal(0, 1, 100) # 均值为0,标准差为1的正态分布数据# 执行K-S检验
ks_statistic, ks_p_value = stats.kstest(data, 'norm')# 打印结果
print("K-S统计量 (D) =", ks_statistic)
print("p值 (p) =", ks_p_value)# 设置显著性水平
alpha = 0.05# 根据p值进行假设检验
if ks_p_value < alpha:print("拒绝原假设:数据不服从正态分布")
else:print("接受原假设:数据服从正态分布")
K-S检验对np.random.normal(均值非0,标准差非1)生成的正态分布数据可能会过于敏感,导致几乎总是拒绝原假设(数据不服从正态分布)。这种情况通常在样本量较大时发生,因为K-S检验趋向于检测到微小的差异。
K-S检验在样本量较大时的敏感性确实是一个已知的问题,尤其是当样本容量远远大于100时,它可能会导致虚假的拒绝。这是因为即使数据来自正态分布,也会因样本量的增加而产生统计上的显著性,从而拒绝原假设。
对于大样本,通常更合适的方法是依赖于直观的图形分析,例如正态概率图(Q-Q图)或直方图,以评估数据的正态性。这些方法可以提供更直观的信息,帮助你判断数据是否符合正态分布,而不受K-S检验的限制。
总之,K-S检验在大样本情况下可能过于敏感,因此在应用时需要谨慎,结合其他检验方法和可视化分析来综合评估数据的分布情况。
相关文章:
Kolmogorov-Smirnov正态性检验
Kolmogorov-Smirnov正态性检验是一种统计方法,用于检验数据集是否服从正态分布。其基本原理和用途如下: 基本原理: 假设检验:Kolmogorov-Smirnov检验基于一个假设,即待检验的数据集服从特定的理论正态分布。计算累积…...
BI神器Power Query(25)-- 使用PQ实现表格多列转换(1/3)
实例需求:原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中,att1、att3、att5为一组,att2、att3、att6为另一组,数据如下所示。 更新表格数据 原始数据表: Col1Col2Att1Att2Att3Att4Att5Att6AAADD…...
windows系统一键开启和关闭虚拟化
说明 跟虚拟化相关的三个程序 一键开启脚本 REM 开启 Hyper-V 服务 pushd "%~dp0"dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txtfor /f %%i in (findstr /i . hyper-v.txt 2^>nul) do dism /online /norestart /add-package:"%Sy…...
NSSCTF做题(5)
[NSSCTF 2022 Spring Recruit]babyphp 代码审计 if(isset($_POST[a])&&!preg_match(/[0-9]/,$_POST[a])&&intval($_POST[a])){ if(isset($_POST[b1])&&$_POST[b2]){ if($_POST[b1]!$_POST[b2]&&md5($_POST[b1])md5($_POST[b2])){…...
java基础题——二维数组的基本应用
1.设计程序按照各个学生的 Java 成绩进行排序 ( 降序 ) 2.设计程序,根据学生总成绩进行排序(降序排列),并输出学生姓名、每门课程的名称和该学生的成绩、该学生的总成绩 public static void main(String[] args) {String[] names {"安琪拉",…...
Leetcode 2119.反转两次的数字
反转 一个整数意味着倒置它的所有位。 例如,反转 2021 得到 1202 。反转 12300 得到 321 ,不保留前导零 。 给你一个整数 num ,反转 num 得到 reversed1 ,接着反转 reversed1 得到 reversed2 。如果 reversed2 等于 num &#x…...
BI神器Power Query(27)-- 使用PQ实现表格多列转换(3/3)
实例需求:原始表格包含多列属性数据,现在需要将不同属性分列展示在不同的行中,att1、att3、att5为一组,att2、att3、att6为另一组,数据如下所示。 更新表格数据 原始数据表: Col1Col2Att1Att2Att3Att4Att5Att6AAADD…...
VUE3照本宣科——认识VUE3
VUE3照本宣科——认识VUE3 前言一、命令创建项目1.中文官网2.菜鸟教程 二、VUE3项目目录结构1.public2.src(1)assets(2)components 3. .eslintrc.cjs4. .gitignore5. .prettierrc.json6.index.html7.package.json8.README.md9.vit…...
《计算机视觉中的多视图几何》笔记(12)
12 Structure Computation 本章讲述如何在已知基本矩阵 F F F和两幅图像中若干对对应点 x ↔ x ′ x \leftrightarrow x x↔x′的情况下计算三维空间点 X X X的位置。 文章目录 12 Structure Computation12.1 Problem statement12.2 Linear triangulation methods12.3 Geomet…...
TFT LCD刷新原理及LCD时序参数总结(LCD时序,写的挺好)
cd工作原理目前不了解,日后会在博客中添加这一部分的内容。 1.LCD工作原理[1] 我对LCD的工作原理也仅仅处在了解的地步,下面基于NXP公司对LCD工作原理介绍的ppt来学习一下。 LCD(liquid crystal display,液晶显示屏) 是由液晶段阵列组成,当…...
基于Java的电影院购票系统设计与实现(源码+lw+部署文档+讲解等)
文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding)有保障的售后福利 代码参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…...
Linux基础指令(六)
目录 前言1. man 指令2. date 指令3. cal 指令4. bc 指令5. uname 指令结语: 前言 欢迎各位伙伴来到学习 Linux 指令的 第六天!!! 在上一篇文章 Linux基本指令(五) 中,我们通过一段故事线,带大家感性的了…...
Anderson-Darling正态性检验【重要统计工具】
Anderson-Darling正态性检验是一种用于确定数据集是否服从正态分布(也称为高斯分布或钟形曲线分布)的统计方法。它基于Anderson和Darling于1954年提出的检验统计量。该检验的基本原理和用途如下: 基本原理: 零假设(Nu…...
Ubuntu基于Docker快速配置GDAL的Python、C++环境
本文介绍在Linux的Ubuntu操作系统中,基于Docker快速配置Python、C等不同编程语言均可用的地理数据处理库GDAL的方法。 首先,我们访问GDAL库的Docker镜像官方网站(https://github.com/OSGeo/gdal/tree/master/docker)。其中&#x…...
<C++> 哈希表模拟实现STL_unordered_set/map
哈希表模板参数的控制 首先需要明确的是,unordered_set是K模型的容器,而unordered_map是KV模型的容器。 要想只用一份哈希表代码同时封装出K模型和KV模型的容器,我们必定要对哈希表的模板参数进行控制。 为了与原哈希表的模板参数进行区分…...
【数据结构与算法】通过双向链表和HashMap实现LRU缓存 详解
这个双向链表采用的是有伪头节点和伪尾节点的 与上一篇文章中单链表的实现不同,区别于在实例化这个链表时就初始化了的伪头节点和伪尾节点,并相互指向,在第一次添加节点时,不需要再考虑空指针指向问题了。 /*** 通过链表与HashMa…...
MySQL的内置函数
文章目录 1. 聚合函数2. group by子句的使用3. 日期函数4. 字符串函5. 数学函数6. 其它函数 1. 聚合函数 COUNT([DISTINCT] expr) 返回查询到的数据的数量 用SELECT COUNT(*) FROM students或者SELECT COUNT(1) FROM students也能查询总个数。 统计本次考试的数学成绩分数去…...
数据结构与算法-(7)---栈的应用-(3)表达式转换
🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如…...
Lilliefors正态性检验(一种非参数统计方法)
Lilliefors检验(也称为Kolmogorov-Smirnov-Lilliefors检验)是一种用于检验数据是否符合正态分布的统计检验方法,它是Kolmogorov-Smirnov检验的一种变体,专门用于小样本情况。与K-S检验不同,Lilliefors检验不需要假定数…...
【云原生】配置Kubernetes CronJob自动备份MySQL数据库(单机版)
文章目录 每天自动备份数据库MySQL【云原生】配置Kubernetes CronJob自动备份Clickhouse数据库 每天自动备份数据库 MySQL 引用镜像:databack/mysql-backup,使用文档:https://hub.docker.com/r/databack/mysql-backup 测试、开发环境:每天0点40分执行全库备份操作,备份文…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
