当前位置: 首页 > news >正文

短期风速预测|LSTM|ELM|批处理(matlab代码)

目录

1 主要内容

LSTM-长短时记忆

ELM-极限学习机

2 部分代码

3 程序结果

4 程序链接


主要内容

该程序是预测类的基础性代码,程序对河北某地区的气象数据进行详细统计,程序最终得到pm2.5的预测结果,通过更改数据很容易得到风速预测结果。程序主要分为三部分,分别是基于LSTM算法、基于ELM算法和基于LSTM和批处理组合算法,对于预测类程序,算法组合是创新的方向,很多预测都是通过智能算法对参数寻优+LSTM/ELM等算法进行组合,本次提供的三种基础性代码是对同一数据进行处理分析,并得到相应的预测结果,程序采用matlab编写,无需其他软件包,注释清楚,方便学习!

详实的气象数据是一大亮点。
  • LSTM-长短时记忆

  • ELM-极限学习机

极 限 学 习 机 是 在 原 来 单 隐 含 层 神 经 网 络 (Single-hidden Layer Feedforward Networks,SLFNs)上加以改进后,发展而成的新型智能算法。ELM 方法具有学习效率高的特点,被广泛应用于分类、回归、聚类和特征学习等问题中。作为 一种新型的学习算法,ELM 学习速度快、不容易陷入局部最优,对于单隐层神经网络,可以随机初始化输入权重和偏置并得到相应的输出权重,有效克制了局部 极限的问题。因为极限学习机不包括神经网络反向传播中参数优化的过程,而是 通过求解广义逆矩阵的途径一步求出隐含层的偏置量,这样既提高了算法的精度, 同时收敛速度更快,学习效果更好。

部分代码

%% 此程序为不含批训练的lstm
clear;clc;close all;format compact
%% 加载数据
qx1=xlsread('沧州气象日度数据.xlsx','B2:G362');%由于有缺失值,因此只读了前几列最后几列
qx2=xlsread('沧州气象日度数据.xlsx','J2:O362');
qx=[qx1 qx2];
wr=xlsread('沧州污染日度数据.xlsx','C2:C362');%污染数据比气象数据多几条,我把对应日期的数据删除了
input=[wr(1:end-1,:) qx(2:end,:)]';%输入为前一天的pm2.5+预测日的气象  输出为预测日的pm2.5
output=wr(2:end,:)';
​
​
input=mapminmax(input,0,1);
[output,outputns]=mapminmax(output,0,1);
%% 提取300个样本为训练样本,剩下样本为预测样本
n=1:size(input,2);
i=300;
train_data=input(:,n(1:i));
train_label=output(:,n(1:i));
P_test=input(:,n(i+1:end));
T_test=output(:,n(i+1:end));
​
data_length=size(train_data,1);
data_num=size(train_data,2);
%% 网络参数初始化
% 结点数设置
input_num=data_length;%输入层节点
cell_num=3;%隐含层节点
output_num=1;%输出层节点
dropout=0;%dropout系数
cost_gate=1e-10;% 误差要求精度
ab=4*sqrt(6/(cell_num+output_num));%  利用均匀分布进行初始化
% 网络中门的偏置
bias_input_gate=rand(1,cell_num);
bias_forget_gate=rand(1,cell_num);
bias_output_gate=rand(1,cell_num);
%% 网络权重初始化
weight_input_x=rand(input_num,cell_num)/ab;
weight_input_h=rand(output_num,cell_num)/ab;
weight_inputgate_x=rand(input_num,cell_num)/ab;
weight_inputgate_c=rand(cell_num,cell_num)/ab;
weight_forgetgate_x=rand(input_num,cell_num)/ab;
weight_forgetgate_c=rand(cell_num,cell_num)/ab;
weight_outputgate_x=rand(input_num,cell_num)/ab;
weight_outputgate_c=rand(cell_num,cell_num)/ab;
%hidden_output权重
weight_preh_h=rand(cell_num,output_num);
%网络状态初始化
h_state=rand(output_num,data_num);
cell_state=rand(cell_num,data_num);
%% 网络训练学习
for iter=1:100%训练次数iter
%     yita=0.1;yita=1/(10+sqrt(iter)); %自适应学习率for m=1:data_num%前馈部分if(m==1)gate=tanh(train_data(:,m)'*weight_input_x);input_gate_input=train_data(:,m)'*weight_inputgate_x+bias_input_gate;output_gate_input=train_data(:,m)'*weight_outputgate_x+bias_output_gate;for n=1:cell_numinput_gate(1,n)=1/(1+exp(-input_gate_input(1,n)));output_gate(1,n)=1/(1+exp(-output_gate_input(1,n)));endforget_gate=zeros(1,cell_num);forget_gate_input=zeros(1,cell_num);cell_state(:,m)=(input_gate.*gate)';elsegate=tanh(train_data(:,m)'*weight_input_x+h_state(:,m-1)'*weight_input_h);input_gate_input=train_data(:,m)'*weight_inputgate_x+cell_state(:,m-1)'*weight_inputgate_c+bias_input_gate;forget_gate_input=train_data(:,m)'*weight_forgetgate_x+cell_state(:,m-1)'*weight_forgetgate_c+bias_forget_gate;output_gate_input=train_data(:,m)'*weight_outputgate_x+cell_state(:,m-1)'*weight_outputgate_c+bias_output_gate;for n=1:cell_numinput_gate(1,n)=1/(1+exp(-input_gate_input(1,n)));forget_gate(1,n)=1/(1+exp(-forget_gate_input(1,n)));output_gate(1,n)=1/(1+exp(-output_gate_input(1,n)));endcell_state(:,m)=(input_gate.*gate+cell_state(:,m-1)'.*forget_gate)';endpre_h_state=tanh(cell_state(:,m)').*output_gate;h_state(:,m)=(pre_h_state*weight_preh_h)';%误差计算Error=h_state(:,m)-train_label(:,m);Error_Cost(1,iter)=sum(Error.^2);if(Error_Cost(1,iter)1;break;else %权重更新

程序结果

上面三个图是标准LSTM算法得到的预测结果,相对平均误差为0.4828。

上述两个图是LSTM+批处理得到的预测结果,相对平均误差为0.3690,可见增加批处理对于预测精度提成达23.6%。

上述两个图是ELM方法预测结果,相对平均误差为0.4052,较LSTM算法有所提升。

4 程序链接

 短期风速预测|LSTM|ELM|批处理

相关文章:

短期风速预测|LSTM|ELM|批处理(matlab代码)

目录 1 主要内容 LSTM-长短时记忆 ELM-极限学习机 2 部分代码 3 程序结果 4 程序链接 1 主要内容 该程序是预测类的基础性代码,程序对河北某地区的气象数据进行详细统计,程序最终得到pm2.5的预测结果,通过更改数据很容易得到风速预测结…...

【LeetCode热题100】--102.二叉树的层序遍历

102.二叉树的层序遍历 广度优先搜索: 我们可以想到最朴素的方法是用一个二元组 (node, level) 来表示状态,它表示某个节点和它所在的层数,每个新进队列的节点的 level 值都是父亲节点的 level 值加一。最后根据每个点的 level 对点进行分类&…...

第44节——redux store

一、概念 Redux 是一个用于管理 JavaScript 应用状态的库。在 Redux 中,整个应用的状态都存储在一个对象中,称为 store。 Store 实际上是一个 JavaScript 对象,它存储了整个应用的状态。它是唯一的,意味着应用中只有一个 store。…...

【2023年11月第四版教材】第17章《干系人管理》(第二部分)

第17章《干系人管理》(第二部分) 4 过程1-识别干系人4.1 数据收集★★★4.3数据分析4.4 权力利益方格4.5 数据表现:干系人映射分析和表现★★★ 5 过程2-规划干系人参与5.1 数据分析5.2 数据表现★★★5.2.1 干系人参与度评估矩阵★★★ 5.3 …...

含分布式电源的配电网可靠性评估(matlab代码)

目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序参考《基于仿射最小路法的含分布式电源配电网可靠性分析》文献方法,通过概率模型和时序模型分别进行建模,实现基于概率模型最小路法的含分布式电源配电网可靠性评估以及时序模型…...

react的组件

组件 组件是用来实现局部功能的代码和资源的集合(html/css/js),用来复用代码。 react中分为函数式组件和类式组件。函数式组件就是一个函数,函数的返回值就是组件的视图内容。类式组件就是通过class关键字创建的类,类…...

低功耗引擎Cliptrix为什么可以成为IOT的高效能工具

在万物互联的时代,现代人已普遍接受电视、音箱等电器设备具备智能化能力,也是在这个趋势下,我们身边越来越多的iOT设备联网和交互成为刚需。 但iot设备也面临到一些非常显著的痛点,例如iot设备的内存、处理器等核心元件无法与手机…...

深入学习git

1、git原理及整体架构图 一些常用的命令 git add . 或 git add src/com/ygl/hello/hello.java 指定文件 git commit . 或 git commit src/com/ygl/hello/hello.java 指定文件 git push origin 分支名称 2、git stash的应用场景 场景一:你正在当前分支A开发&…...

第9章 Mybatis

9.1 谈谈你对Mybatis的理解 难度:★★ 重点:★★ 白话解析 说清楚Mybatis是什么,它的工作流程,然后再对比一下Hibernate就好了。 1、Mybatis是什么:它一个半自动ORM框架,它底层把JDBC那套加载驱动、创建连接、创建statement等重复性的硬编码全部给你封装好了,程序员只…...

隐蔽通信论文复现

文章目录 前言一、Limits of Reliable Communication with Low Probability of Detection on AWGN Channels摘要introduction 前言 本文准备先考虑隐蔽中通信经典的Alice, Bob, Willie三点模型, 总结出其中的经典套路 一、Limits of Reliable Communication with Low Probabil…...

《Vue.js+Spring Boot全栈开发实战》简介

大家好,我是老卫。 恰逢中秋国庆双节,不想出门看人山,惟愿宅家阅书海! 今天开箱的这本书是《Vue.jsSpring Boot全栈开发实战》。 外观 从书名故名思议,就是基于Vue.jsSpring Boot来实现企业级应用全栈开发。 该书由…...

机器人中的数值优化(二十)——函数的光滑化技巧

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,…...

搭建全连接网络进行分类(糖尿病为例)

拿来练手,大神请绕道。 1.网上的代码大多都写在一个函数里,但是其实很多好论文都是把网络,数据训练等分开写的。 2.分开写就是有一个需要注意的事情,就是要import 要用到的文件中的模型或者变量等。 3.全连接的回归也写了&#…...

【小沐学前端】Node.js实现基于Protobuf协议的UDP通信(UDP/TCP)

文章目录 1、简介1.1 node1.2 Protobuf 2、下载和安装2.1 node2.2 Protobuf2.2.1 安装2.2.2 工具 3、node 代码示例3.1 HTTP3.2 UDP单播3.4 UDP广播 4、Protobuf 代码示例4.1 例子: awesome.proto4.1.1 加载.proto文件方式4.1.2 加载.json文件方式4.1.3 加载.js文件方式 4.2 例…...

Verasity Tokenomics — 社区讨论总结与下一步计划

Verasity 代币经济学的社区讨论已结束。 本次讨论从 8 月 4 日持续到 9 月 29 日,是区块链领域规模最大的讨论之一,超过 500,000 名 VRA 持有者和社区成员参与讨论,并收到了数千份回复。 首先,我们要感谢所有参与讨论并提出详细建…...

JUC第十三讲:JUC锁: ReentrantLock详解

JUC第十三讲:JUC锁: ReentrantLock详解 本文是JUC第十三讲,JUC锁:ReentrantLock详解。可重入锁 ReentrantLock 的底层是通过 AbstractQueuedSynchronizer 实现,所以先要学习上一章节 AbstractQueuedSynchronizer 详解。 文章目录 …...

WSL2安装历程

WLS2安装 1、系统检查 安装WSL2必须运行 Windows 10 版本 2004 及更高版本(内部版本 19041 及更高版本)或 Windows 11。 查看 Windows 版本及内部版本号,选择 Win R,然后键入winver。 2、家庭版升级企业版 下载HEU_KMS_Activ…...

Ubuntu20配置Mysql常用操作

文章目录 版权声明ubuntu更换软件源Ubuntu设置静态ipUbuntu防火墙ubuntu安装ssh服务Ubuntu安装vmtoolsUbuntu安装mysql5.7Ubuntu安装mysql8.0Ubuntu卸载mysql 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我特此声明,所有版权属于黑马程…...

【解决方案】‘create’ is not a member of ‘cv::aruco::DetectorParameters’

‘create’ is not a member of ‘cv::aruco::DetectorParameters’ 在构建AruCo标定板标定位姿代码的过程中,发现代码中认为create并不是aruco::DetectorParameters的成员函数,这是因为在4.7.0及以上的OpenCV版本中,对ArUco的代码做调整&…...

门牌制作(蓝桥杯)

门牌制作 题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小蓝要为一条街的住户制作门牌号。 这条街一共有 2020 位住户,门牌号从 1 到 2020 编号。 小蓝制作门牌的方法是先制作 0 到 9 这几个数字字…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

【JVM】- 内存结构

引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...