当前位置: 首页 > news >正文

使用序列到序列深度学习方法自动睡眠阶段评分

深度学习方法,用于使用单通道脑电图进行自动睡眠阶段评分。

 

def build_firstPart_model(input_var,keep_prob_=0.5):# List to store the output of each CNNsoutput_conns = []######### CNNs with small filter size at the first layer ########## Convolutionnetwork = tf.layers.conv1d(inputs=input_var, filters=64, kernel_size=50, strides=6,padding='same', activation=tf.nn.relu)network = tf.layers.max_pooling1d(inputs=network, pool_size=8, strides=8, padding='same')# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)# Convolutionnetwork = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=8, strides=1,padding='same', activation=tf.nn.relu)# Max poolingnetwork = tf.layers.max_pooling1d(inputs=network, pool_size=4, strides=4, padding='same')# Flattennetwork = flatten(name="flat1", input_var=network)output_conns.append(network)######### CNNs with large filter size at the first layer ########## Convolutionnetwork = tf.layers.conv1d(inputs=input_var, filters=64, kernel_size=400, strides=50,padding='same', activation=tf.nn.relu)network = tf.layers.max_pooling1d(inputs=network, pool_size=4, strides=4, padding='same')# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)# Convolutionnetwork = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)network = tf.layers.conv1d(inputs=network, filters=128, kernel_size=6, strides=1,padding='same', activation=tf.nn.relu)# Max poolingnetwork = tf.layers.max_pooling1d(inputs=network, pool_size=2, strides=2, padding='same')# Flattennetwork = flatten(name="flat2", input_var=network)output_conns.append(network)# Concatnetwork = tf.concat(output_conns,1, name="concat1")# Dropoutnetwork = tf.nn.dropout(network, keep_prob_)return network

相关文章:

使用序列到序列深度学习方法自动睡眠阶段评分

深度学习方法,用于使用单通道脑电图进行自动睡眠阶段评分。 def build_firstPart_model(input_var,keep_prob_0.5):# List to store the output of each CNNsoutput_conns []######### CNNs with small filter size at the first layer ########## Convolutionnetw…...

【算法】排序——选择排序和交换排序(快速排序)

主页点击直达:个人主页 我的小仓库:代码仓库 C语言偷着笑:C语言专栏 数据结构挨打小记:初阶数据结构专栏 Linux被操作记:Linux专栏 LeetCode刷题掉发记:LeetCode刷题 算法头疼记:算法专栏…...

Docker 容器监控 - Weave Scope

Author:rab 目录 前言一、环境二、部署三、监控3.1 容器监控 - 单 Host3.2 容器监控 - 多 Host 总结 前言 Docker 容器的监控方式有很多,如 cAdvisor、Prometheus 等。今天我们来看看其另一种监控方式 —— Weave Scope,此监控方法似乎用的人…...

Spring Boot集成redis集群拓扑动态刷新

项目场景: Spring Boot集成Redis集群,使用lettuce连接Cluster集群实例。 问题描述 redis其中一个节点挂了之后,springboot集成redis集群配置信息没有及时刷新,出现读取操作报错。 java.lang.IllegalArgumentException: Connec…...

COCI2022-2023#1 Neboderi

P9032 [COCI2022-2023#1] Neboderi 题目大意 有一个长度为 n n n的序列 h i h_i hi​,你需要从中选择一个长度大于等于 k k k的子区间 [ l , r ] [l,r] [l,r],使得 g ( h l h l 1 ⋯ h r ) g\times (h_lh_{l1}\cdotsh_r) g(hl​hl1​⋯hr​)最小&…...

由于找不到d3dx9_43.dll无法继续执行此代码怎么解决?全面解析d3dx9_43.dll

在使用计算机过程中,我们可能会遇到各种各样的问题。其中之一就是d3dx9_43.dll文件丢失的问题。这个问题通常会出现在运行某些应用程序或游戏时,导致程序无法正常启动或运行。那么,如何解决这个问题呢?小编将为您提供一些解决方案…...

Linux--网络编程-字节序

进程间的通信: 管道、消息队列、共享内存、信号、信号量。 特点:都依赖于linux内核。 缺陷:无法多机通信。 一、网络编程: 1、地址:基于网络,ip地址端口号。 端口号作用: 一台拥有ip地址的主机…...

python实现http/https拦截

python实现http拦截 前言:为什么要使用http拦截一、技术调研二、技术选择三、使用方法前言:为什么要使用http拦截 大多数爬虫玩家会直接选择API请求数据,但是有的网站需要解决扫码登录、Cookie校验、数字签名等,这种方法实现时间长,难度高。需求里面不需要高并发,有没有…...

农产品团购配送商城小程序的作用是什么

农产品覆盖稻麦油蛋等多种细分类目,各地区经营商家众多,随着人们生活品质提升,对食物的要求也在提升,绿色无污染无激素的农产品往往受到不少人喜爱,而在销售中,也有不少人选择自建商城线上经营。 通过【雨…...

使用van-dialog二次封装微信小程序模态框

由于微信小程序的wx.showModal不支持富文本内容&#xff0c;无法实现更灵活的展示效果&#xff0c;故需要进行二次封装 实现思路&#xff1a;使用van-dialog以及微信小程序的rich-text实现 代码如下&#xff1a; // index.wxml <van-dialoguse-slottitle"提示"s…...

生鲜蔬果同城配送社区团购小程序商城的作用是什么

生鲜蔬果行业作为市场主要支撑之一&#xff0c;从业商家众多的同时消费者也从不缺&#xff0c;尤其对中高城市&#xff0c;生鲜蔬果除了传统线下超市、市场经营外&#xff0c;线上更是受到大量消费者信任&#xff0c;而很多商家也是自建了生鲜蔬果商城多场景生意经营。 那么通…...

Unity实现设计模式——状态模式

Unity实现设计模式——状态模式 状态模式最核心的设计思路就是将对象的状态抽象出一个接口&#xff0c;然后根据它的不同状态封装其行为&#xff0c;这样就可以实现状态和行为的绑定&#xff0c;最终实现对象和状态的有效解耦。 在实际开发中一般用到FSM有限状态机的实现&…...

差分数组的应用技巧

前缀和技巧 针对的算法场景是不需要对原始数组进行修改的情况下&#xff0c;频繁查询某个区间的累加和。 差分数组 主要适用场景是频繁对原始数组的某个区间的元素进行增减。 相关题目 1094. 拼车 1109. 航班预订统计 370. 区间加法 # 1094. 拼车 class Solution:def carPool…...

斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 10 Mining Social-Network Graphs

来源&#xff1a;《斯坦福数据挖掘教程第三版》对应的公开英文书和PPT。 Chapter 10 Mining Social-Network Graphs The essential characteristics of a social network are: There is a collection of entities that participate in the network. Typically, these entiti…...

DFS:842. 排列数字

给定一个整数 nn&#xff0c;将数字 1∼n1∼n 排成一排&#xff0c;将会有很多种排列方法。 现在&#xff0c;请你按照字典序将所有的排列方法输出。 输入格式 共一行&#xff0c;包含一个整数 nn。 输出格式 按字典序输出所有排列方案&#xff0c;每个方案占一行。 数据…...

pytorch之nn.Conv1d详解

自然语言处理中一个句子序列&#xff0c;一维的&#xff0c;所以使用Conv1d...

H5生成二维码

H5生成二维码&#xff1a; 1.引入js库&#xff0c;可自行点击链接复制使用 <script type"text/javascript" src"http://static.runoob.com/assets/qrcode/qrcode.min.js"></script>2.加入二维码占位区HTML <div id"qrCode">…...

Three.js加载360全景图片/视频

Three.js加载360全景图片/视频 效果 原理 将全景图片/视频作为texture引入到three.js场景中将贴图与球形网格模型融合&#xff0c;将球模型当做成环境容器使用处理视频时需要以dom为载体&#xff0c;加载与控制视频动作每次渲染时更新当前texture&#xff0c;以达到视频播放效…...

北大硕士7年嵌入式学习经验分享

阶段 1 大一到大三这个阶段我与大多数学生相同&#xff1a; 学习本专业知识&#xff08;EE专业&#xff09;&#xff0c;学习嵌入式软件开发需要的计算机课程&#xff08;汇编原理&#xff0c;计算机组成原理&#xff0c;操作系统&#xff0c;C语言等&#xff09;&#xff0c…...

华为鸿蒙手表开发之动态生成二维码

华为鸿蒙手表开发之动态生成二维码 前言&#xff1a; 最近入职新公司&#xff0c;由于之前的哥们临时离职&#xff0c;走得很突然&#xff0c;所以没有任何交接和文档&#xff0c;临时顶上公司手表应用的上架&#xff0c;更换了新的密钥和key之后重新测试功能和流程&#xff…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...