当前位置: 首页 > news >正文

基于蜉蝣优化的BP神经网络(分类应用) - 附代码

基于蜉蝣优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于蜉蝣优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.蜉蝣优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 蜉蝣算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用蜉蝣算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.蜉蝣优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 蜉蝣算法应用

蜉蝣算法原理请参考:https://blog.csdn.net/u011835903/article/details/109253587

蜉蝣算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从蜉蝣算法的收敛曲线可以看到,整体误差是不断下降的,说明蜉蝣算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于蜉蝣优化的BP神经网络(分类应用) - 附代码

基于蜉蝣优化的BP神经网络(分类应用) - 附代码 文章目录 基于蜉蝣优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.蜉蝣优化BP神经网络3.1 BP神经网络参数设置3.2 蜉蝣算法应用 4.测试结果:5.M…...

前端系列-1 HTML+JS+CSS基础

背景: 前端系列会收集碎片化的前端知识点,作为自己工作和学习时的字典,欢迎读者收藏和使用。 笔者是后端开发😶前端涉猎不深,因此文章重在广度和实用,对原理和性能不会过多深究。 1.html 1.1 html5网页结…...

Learning Invariant Representation for Unsupervised Image Restoration

Learning Invariant Representation for Unsupervised Image Restoration (Paper reading) Wenchao Du, Sichuan University, CVPR20, Cited:63, Code, Paper 1. 前言 近年来,跨域传输被应用于无监督图像恢复任务中。但是,直接应用已有的框架&#xf…...

1.4.C++项目:仿muduo库实现并发服务器之buffer模块的设计

项目完整版在: 一、buffer模块: 缓冲区模块 Buffer模块是一个缓冲区模块,用于实现通信中用户态的接收缓冲区和发送缓冲区功能。 二、提供的功能 存储数据,取出数据 三、实现思想 1.实现换出去得有一块内存空间,采…...

AndroidStudio精品插件集

官网 项目地址:Github博客地址:Studio 精品插件推荐 使用需知 所有插件在 Android Studio 2022.3.1.18(长颈鹿)上测试均没有问题,推荐使用此版本Android Studio 2022.3.1.18(长颈鹿)正式版下…...

java图书管理系统

一、 引言 图书管理系统是一个用于图书馆或书店管理图书信息、借阅记录和读者信息的应用程序。本系统使用Java Swing框架进行开发,提供直观的用户界面,方便图书馆管理员或书店工作人员对图书信息进行管理。以下是系统的设计、功能和实现的详细报告。 二…...

大屏自适应容器组件-Vue3+TS

1.引言 在做数字大屏时,图表能跟着浏览器的尺寸自动变化,本文采用Vue3前端框架,采用TypeScript语言,封装了一个大屏自适应组件,将需要显示的图表放入组件的插槽中,就能实现自适应屏幕大小的效果。 2.实际…...

java图书信息管理

一、项目概述 本图书信息管理系统旨在提供一个直观的用户界面,用于管理图书馆或书店的图书信息。系统包括图书添加、查询、借阅和归还等功能。 二、系统架构 系统采用JavaSwing作为前端UI框架,后端使用Java Servlet处理业务逻辑,数据存储在…...

apache服务器出现No input file specified.解决方案

APACHE服务器出现No input file specified.解决方案 thinkcmf程序默认的.htaccess里面的规则&#xff1a; <IfModule mod_rewrite.c> RewriteEngine on RewriteCond %{REQUEST_FILENAME} !-d RewriteCond %{REQUEST_FILENAME} !-f RewriteRule ^(.*)$ index.php/$1 [QSA…...

你写过的最蠢的代码是?——全栈开发篇

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

正点原子嵌入式linux驱动开发——TF-A初探

上一篇笔记中&#xff0c;正点原子的文档简单讲解了一下什么是TF-A&#xff0c;并且也学习了如何编译TF-A。但是TF-A是如何运行的&#xff0c;它的一个运行流程并未涉及。TF-A的详细运行过程是很复杂的&#xff0c;涉及到很多ARM处理器底层知识&#xff0c;所以这一篇笔记的内容…...

【网安别学成开发】之——python篇

经典入门编程题 1.猜数字 经典的猜数字游戏&#xff0c;几乎所有人学编程时都会做。 功能描述&#xff1a; 随机选择一个三位以内的数字作为答案。用户输入一个数字&#xff0c;程序会提示大了或是小了&#xff0c;直到用户猜中。 #!/usr/bin/env python3import randomresu…...

vue图片显示

一、Vue图片显示方法&#xff1a; 1.直接使用<img>标签&#xff1a; 最简单的方法是使用<img>标签&#xff0c;并将图片的URL作为src属性的值。例如&#xff1a; <img src"path/to/your/image.jpg" alt"Image"> 如果是绝对路径&#x…...

S32K144 GPIO编程

前面的文章介绍了如何在MDK-Keil下面进行S32K144的开发&#xff0c;下面就使用该工程模板进行GPIO LED的编程试验。 1. 开发环境 S32K144EVB-Q100开发板MDK-Keil Jlink 2. 硬件连接 S32K144EVB-Q100开发板关于LED的原理图如下&#xff1a; 也就是具体连接关系如下&#xf…...

域名备案流程(个人备案,腾讯云 / 阿里云)

文章目录 1.网站备案的目的2.备案准备的材料2.1 网站域名2.2 云资源或备案授权码2.3 电子材料 3.首次个人备案准备的材料3.1 主体相关3.2 域名相关3.3 网站相关3.4 网站服务相关3.5 变更相关 4.个人备案流程4.1 登录系统4.2 填写备案信息&#x1f340; 填写备案省份&#x1f34…...

子网ip和子网掩码的关系

子网ip和子网掩码的关系 一个IP地址被分为两部分&#xff1a;网络地址和主机地址。这是通过子网掩码来实现的。 子网掩码&#xff08;Subnet Mask&#xff09;是一个32位的二进制数&#xff0c;它用来区分一个IP地址中的网络地址和主机地址。在子网掩码中&#xff0c;网络地址…...

openGauss学习笔记-88 openGauss 数据库管理-内存优化表MOT管理-内存表特性-使用MOT-MOT使用将磁盘表转换为MOT

文章目录 openGauss学习笔记-88 openGauss 数据库管理-内存优化表MOT管理-内存表特性-使用MOT-MOT使用将磁盘表转换为MOT88.1 前置条件检查88.2 转换88.3 转换示例 openGauss学习笔记-88 openGauss 数据库管理-内存优化表MOT管理-内存表特性-使用MOT-MOT使用将磁盘表转换为MOT …...

网络-Ajax

文章目录 前言一、Ajax优点&#xff1a;缺点&#xff1a; 二、使用步骤XNLHttpRequest对象完整代码 总结 前言 本文主要记录Ajax技术的简介&#xff0c;以及用法。 一、Ajax Ajax是一组用于在Web浏览器和Web服务器之间进行异步通信的Web开发技术。 它代表着Asynchronous Java…...

Autowired和Resource的关系

相同点对于下面的代码来说&#xff0c;如果是Spring容器的话&#xff0c;两个注解的功能基本是等价的&#xff0c;他们都可以将bean注入到对应的field中 不同点但是请注意&#xff0c;这里说的是基本相同&#xff0c;说明还是有一些不同点的&#xff1a; byName和byType匹配顺…...

HashTable, HashMap, ConcurrentHashMap 之间的区别

HashMap: 线程不安全. key 允许为 null。 Hashtable: 线程安全. 使用 synchronized 锁 Hashtable 对象, 效率较低. key 不允许为 null.。只是简单的把关键方法上加上了 synchronized 关键字。如 get 和 set &#xff0c;这相当于直接针对 Hashtable 对象本身加锁&#xff0c;如…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)

Name&#xff1a;3ddown Serial&#xff1a;FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名&#xff1a;Axure 序列号&#xff1a;8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡

何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践&#xff0c;很多人以为AI已经强大到不需要程序员了&#xff0c;其实不是&#xff0c;AI更加需要程序员&#xff0c;普通人…...

HarmonyOS-ArkUI 自定义弹窗

自定义弹窗 自定义弹窗是界面开发中最为常用的一种弹窗写法。在自定义弹窗中&#xff0c; 布局样式完全由您决定&#xff0c;非常灵活。通常会被封装成工具类&#xff0c;以使得APP中所有弹窗具备相同的设计风格。 自定义弹窗具备的能力有 打开弹窗自定义布局&#xff0c;以…...