BP神经网络的MATLAB实现(含源代码)
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一
具体数学推导以及原理在本文不做详细介绍,本文将使用MATLAB进行BP神经网络的应用与实践
1 BP神经网络结构

BP神经网络是一种多层前馈神经网络,其主要特点是:信号是前向传播,误差是后向传播。经典的BP神经网络具有三层网络结构,分别为输入层,隐含层,输出层。输入变量X1,X2,经过BP神经网络训练,可得到需要的预测输出Y。
2 代码结构
第一部分 初始化
使用 clear clc等命令对matlab进行初始化
第二部分 导入数据
加载数据集data.mat,此部分需要替换为自己的数据,该数据集需包含输入的X,需要预测输出的Y,然后通过dividerand函数将训练集和测试集分为7:3,也可调整为8:2。
第三部分 数据归一化
归一化是将样本的特征值转换到同一量纲下把数据映射到[-1, 1]区间内,归一化的作用以及函数的使用可以自行百度
第四部分 构造网络结构
输入层节点数是由输入数据组数决定,隐含层节点数由经验公式可得(2倍输入节点数+1),输出节点输出数据组数决定,然后使用newff进行网络训练,( { ‘logsig’ ‘purelin’ } , ‘trainlm’)此处为输入层激活函数,输出层激活函数,训练方法。
第五部分 测试集预测
使用训练好的神经网络对测试集进行测试,并显示输出相关数据。
3 Tips
1 BP神经网络每次训练结果都不一样,此为神经网络特性,选择效果好的一次网络即可,可使用save net 命令保存网络与load net加载网络命令进行复现
2 使用BP神经网络需要大量的数据训练效果才比较好
3 结果不理想时,可通过调整第四部分代码(调整训练目标,训练次数等参数)来得到较好的结果
4 有不理解的函数部分可通过查询MATLAB官方手册查询,本文不再提供代码解答
4 源代码
%% BP神经网络预测
clear
clc
close all
warning off;
tic
%% 导入数据
load data.mat
[trainInd,valInd,testInd] = dividerand(size(X,2),0.7,0,0.3);P_train=X(:,trainInd);
T_train=Y(:,trainInd);
P_test=X(:,testInd);
T_test=Y(:,testInd);%% 归一化
% 训练集
[Pn_train,inputps] = mapminmax(P_train,-1,1);
Pn_test = mapminmax('apply',P_test,inputps);
% 测试集
[Tn_train,outputps] = mapminmax(T_train,-1,1);
Tn_test = mapminmax('apply',T_test,outputps);%% 构造网络结构
%创建神经网络
inputnum = 2; %inputnum 输入层节点数 4维特征
hiddennum = 5; %hiddennum 隐含层节点数
outputnum = 1; %outputnum 隐含层节点数
net = newff( minmax(Pn_train) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'trainlm' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.001 ;
net.trainParam.lr = 0.01 ;
net = train( net, Pn_train , Tn_train ) ;%% 测试集预测
TestResults = sim(net,Pn_test);
TestResults = mapminmax('reverse',TestResults,outputps); %反归一化
TestError = TestResults - T_test;
TestMSE = mse(TestError);figure
plot(T_test,'b-');
hold on
plot(TestResults,'r-');
legend('真实值','预测值');
title('测试集预测结果');
grid onfigure
plot(TestError,'r-');
title('测试集误差')
grid on[~,len]=size(T_test);
MAE1=sum(abs(TestError./T_test))/len;
MSE1=TestError*TestError'/len;
RMSE1=MSE1^(1/2);
R = corrcoef(T_test,TestResults);
r = R(1,2);
disp(['........BP神经网络测试集误差计算................'])
disp(['平均绝对误差MAE为:',num2str(MAE1)])
disp(['均方误差为MSE:',num2str(MSE1)])
disp(['均方根误差RMSE为:',num2str(RMSE1)])
disp(['决定系数 R^2为:',num2str(r)])toc相关文章:
BP神经网络的MATLAB实现(含源代码)
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一 具体数学推导以及原理在本文不做详细介绍,本文将使用MATLAB进行B…...
AES和Rijndael的区别
快速链接: . 👉👉👉 个人博客笔记导读目录(全部) 👈👈👈 付费专栏-付费课程 【购买须知】:密码学实践强化训练–【目录】 👈👈👈“Rijndael” 这个词的中文谐音可以近似地发音为 “瑞恩达尔”。请注意,这只是一种近似的发音方式,因为该词是荷兰姓氏 “Ri…...
【数据结构】—堆详解(手把手带你用C语言实现)
食用指南:本文在有C基础的情况下食用更佳 🔥这就不得不推荐此专栏了:C语言 ♈️今日夜电波:水星—今泉愛夏 1:10 ━━━━━━️💟──────── 4:23 …...
关于算法复杂度的几张表
算法在改进今天的计算机与古代的计算机的区别 去除冗余 数据点 算法复杂度 傅里叶变换...
蓝桥杯每日一题2023.10.1
路径 - 蓝桥云课 (lanqiao.cn) 题目分析 求最短路问题,有多种解法,下面介绍两种蓝桥杯最常用到的两种解法 方法一 Floyd(求任意两点之间的最短路)注:不能有负权回路 初始化每个点到每个点的距离都为0x3f这样才能对…...
第三章:最新版零基础学习 PYTHON 教程(第十节 - Python 运算符—Python 中的运算符重载)
运算符重载意味着赋予超出其预定义操作含义的扩展含义。例如,运算符 + 用于添加两个整数以及连接两个字符串和合并两个列表。这是可以实现的,因为“+”运算符被 int 类和 str 类重载。您可能已经注意到,相同的内置运算符或函数对于不同类的对象显示不同的行为,这称为运算符…...
Nacos 实现服务平滑上下线(Ribbon 和 LB)
前言 不知道各位在使用 SpringCloud Gateway Nacos的时候有没有遇到过服务刚上线偶尔会出现一段时间的503 Service Unavailable,或者服务下线后,下线服务仍然被调用的问题。而以上问题都是由于Ribbon或者LoadBalancer的默认处理策略有关,其…...
c/c++里 对 共用体 union 的内存分配
对union 的内存分配,是按照最大的那个成员分配的。 谢谢...
博途SCL区间搜索指令(判断某个数属于某个区间)
S型速度曲线行车位置控制,停靠位置搜索功能会用到区间搜索指令,下面我们详细介绍区间搜索指令的相关应用。 S型加减速行车位置控制(支持点动和停车位置搜索)-CSDN博客S型加减速位置控制详细算法和应用场景介绍,请查看下面文章博客。本篇文章不再赘述,这里主要介绍点动动和…...
(三)激光线扫描-中心线提取
光条纹中心提取算法是决定线结构光三维重建精度以及光条纹轮廓定位准确性的重要因素。 1. 光条的高斯分布 激光线条和打手电筒一样,中间最亮,越像周围延申,光强越弱,这个规则符合高斯分布,如下图。 2. 传统光条纹中心提取算法 传统的光条纹中心提取算法有 灰度重心法、…...
递归与分治算法(1)--经典递归、分治问题
目录 一、递归问题 1、斐波那契数列 2、汉诺塔问题 3、全排列问题 4、整数划分问题 二、递归式求解 1、代入法 2、递归树法 3、主定理法 三、 分治问题 1、二分搜索 2、大整数乘法 一、递归问题 1、斐波那契数列 斐波那契数列不用过多介绍,斐波那契提出…...
Java之SpringCloud Alibaba【六】【Alibaba微服务分布式事务组件—Seata】
一、事务简介 事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元(unit)。 在关系数据库中,一个事务由一组SQL语句组成。 事务应该具有4个属性: 原子性、一致性、隔离性、持久性。这四个属性通常称为ACID特性。 原子性(atomicity) ∶个事务…...
Android逆向学习(五)app进行动态调试
Android逆向学习(五)app进行动态调试 一、写在前面 非常抱歉鸽了那么久,前一段时间一直在忙,现在终于结束了,可以继续更新android逆向系列的,这个系列我会尽力做下去,然后如果可以的话我看看能…...
音频编辑软件Steinberg SpectraLayers Pro mac中文软件介绍
Steinberg SpectraLayers Pro mac是一款专业的音频编辑软件,旨在帮助音频专业人士进行精细的音频编辑和声音处理。它提供了强大的频谱编辑功能,可以对音频文件进行深入的频谱分析和编辑。 Steinberg SpectraLayers Pro mac软件特点 1. 频谱编辑ÿ…...
基于.Net Core实现自定义皮肤WidForm窗口
前言 今天一起来实现基于.Net Core、Windows Form实现自定义窗口皮肤,并实现窗口移动功能。 素材 准备素材:边框、标题栏、关闭按钮图标。 窗体设计 1、创建Window窗体项目 2、窗体设计 拖拉4个Panel控件,分别用于:标题栏、关…...
【Rust】操作日期与时间
目录 介绍 一、计算耗时 二、时间加减法 三、时区转换 四、年月日时分秒 五、时间格式化 介绍 Rust的时间操作主要用到chrono库,接下来我将简单选一些常用的操作进行介绍,如果想了解更多细节,请查看官方文档。 官方文档:chr…...
blender快捷键
1, shift a 添加物体 2,ctrl alt q 切换四格视图 3, ~ 展示物体的各个视图按钮,(~ 就是tab键上面的键) 4,a 全选,全选后,点 ctrl 鼠标框选 减去已经选择的;…...
java Spring Boot 自动启动热部署 (别再改点东西就要重启啦)
上文 java Spring Boot 手动启动热部署 我们实现了一个手动热部署的代码 但其实很多人会觉得 这叫说明热开发呀 这么捞 写完还要手动去点一下 很不友好 其实我们开发人员肯定是希望重启这种事不需要自己手动去做 那么 当然可以 我们就让它自己去做 Build Project 这个操作 我们…...
TouchGFX之后端通信
在大多数应用中,UI需以某种方式连接到系统的其余部分,并发送和接收数据。 它可能会与硬件外设(传感器数据、模数转换和串行通信等)或其他软件模块进行交互通讯。 Model类 所有TouchGFX应用都有Model类,Model类除了存…...
cesium gltf控制
gltf格式详解 glTF格式本质上是一个JSON文件。这一文件描述了整个3D场景的内容。它包含了对场景结构进行描述的场景图。场景中的3D对象通过场景结点引用网格进行定义。材质定义了3D对象的外观,动画定义了3D对象的变换操作(比如选择、平移操作)。蒙皮定义了3D对象如何进行骨骼…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
