计算机竞赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测
文章目录
- 0 前言
- 1 课题背景
- 2 实现效果
- 3 Yolov5算法
- 4 数据处理和训练
- 5 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 **深度学习卫星遥感图像检测与识别 **
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:5分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 课题背景
近年来,世界各国大力发展航空航天事业,卫星图像的目标检测在各行各业的应用得到了快速的发展,特别是军事侦查、海洋船舶和渔业管理等领域。由于卫星图像中有价值的信息极少,卫星图像数据规模巨大,这迫切需要智能辅助工具帮助相关从业人员从卫星图像中高效获取精确直观的信息。
本文利用深度学习技术,基于Yolov5算法框架实现卫星图像目标检测问题。
2 实现效果
实现效果如下:可以看出对船只、飞机等识别效果还是很好的。
3 Yolov5算法
简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
相关代码
class Yolo(object):def __init__(self, weights_file, verbose=True):self.verbose = verbose# detection paramsself.S = 7 # cell sizeself.B = 2 # boxes_per_cellself.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle","bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant","sheep", "sofa", "train","tvmonitor"]self.C = len(self.classes) # number of classes# offset for box center (top left point of each cell)self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),[self.B, self.S, self.S]), [1, 2, 0])self.y_offset = np.transpose(self.x_offset, [1, 0, 2])self.threshold = 0.2 # confidence scores threholdself.iou_threshold = 0.4# the maximum number of boxes to be selected by non max suppressionself.max_output_size = 10self.sess = tf.Session()self._build_net()self._build_detector()self._load_weights(weights_file)
4 数据处理和训练
数据集
本项目使用 DOTA 数据集,原数据集中待检测的目标如下
原数据集中的标签如下
图像分割和尺寸调整
YOLO 模型的图像输入尺寸是固定的,由于原数据集中的图像尺寸不一,我们将原数据集中的图像按目标分布的位置分割成一个个包含目标的子图,并将每个子图尺寸调整为
1024×1024。分割前后的图像如所示。
分割前
分割后
模型训练
在 yolov5/ 目录,运行 train.py 文件开始训练:
python train.py --weight weights/yolov5s.pt --batch 16 --epochs 100 --cache
其中的参数说明:
- weight:使用的预训练权重,这里示范使用的是 yolov5s 模型的预训练权重
- batch:mini-batch 的大小,这里使用 16
- epochs:训练的迭代次数,这里我们训练 100 个 epoch
- cache:使用数据缓存,加速训练进程
相关代码
#部分代码
def train(hyp, opt, device, tb_writer=None):logger.info(f'Hyperparameters {hyp}')log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directorywdir = log_dir / 'weights' # weights directoryos.makedirs(wdir, exist_ok=True)last = wdir / 'last.pt'best = wdir / 'best.pt'results_file = str(log_dir / 'results.txt')epochs, batch_size, total_batch_size, weights, rank = \opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank# Save run settingswith open(log_dir / 'hyp.yaml', 'w') as f:yaml.dump(hyp, f, sort_keys=False)with open(log_dir / 'opt.yaml', 'w') as f:yaml.dump(vars(opt), f, sort_keys=False)# Configurecuda = device.type != 'cpu'init_seeds(2 + rank)with open(opt.data) as f:data_dict = yaml.load(f, Loader=yaml.FullLoader) # data dictwith torch_distributed_zero_first(rank):check_dataset(data_dict) # checktrain_path = data_dict['train']test_path = data_dict['val']nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check# Modelpretrained = weights.endswith('.pt')if pretrained:with torch_distributed_zero_first(rank):attempt_download(weights) # download if not found locallyckpt = torch.load(weights, map_location=device) # load checkpointif 'anchors' in hyp and hyp['anchors']:ckpt['model'].yaml['anchors'] = round(hyp['anchors']) # force autoanchormodel = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # createexclude = ['anchor'] if opt.cfg else [] # exclude keysstate_dict = ckpt['model'].float().state_dict() # to FP32state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersectmodel.load_state_dict(state_dict, strict=False) # loadlogger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # reportelse:model = Model(opt.cfg, ch=3, nc=nc).to(device) # create# Freezefreeze = ['', ] # parameter names to freeze (full or partial)if any(freeze):for k, v in model.named_parameters():if any(x in k for x in freeze):print('freezing %s' % k)v.requires_grad = False# Optimizernbs = 64 # nominal batch sizeaccumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizinghyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decaypg0, pg1, pg2 = [], [], [] # optimizer parameter groupsfor k, v in model.named_parameters():v.requires_grad = Trueif '.bias' in k:pg2.append(v) # biaseselif '.weight' in k and '.bn' not in k:pg1.append(v) # apply weight decayelse:pg0.append(v) # all else
训练开始时的日志信息
5 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
计算机竞赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测
文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐…...
java web+Mysql e-life智能生活小区物业管理系统
本项目为本人自己书写,主要服务小区业主和管理人员。 e-life智能生活小区涉及多个方面的智能化和便利化服务: 1. 用户模块:包含基本的登入登出操作,查看个人信息中用户可以查看 自己的个人资料但不可以修改个人信息。 a) 用户…...
AttributeError: module ‘dgl‘ has no attribute ‘batch_hetero‘
DGLWarning: From v0.5, DGLHeteroGraph is merged into DGLGraph. You can safely replace dgl.batch_hetero with dgl.batch...
Vue项目搭建图文详解教程
版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 预备工作 请在本地创建文件夹用于存放Vue项目,例如:创建HelloWorld文件夹存放即将创建的Vue新项目。 创建Vue项目 首先,请在DOS中将目录…...
SpringMVC处理请求核心流程
一、前言 SpringMVC是一个基于Java的Web框架,它使用MVC(Model-View-Controller)设计模式来处理Web请求。在SpringMVC中,请求处理的核心流程主要包括以下几个步骤: 1、用户发送请求到前端控制器(Dispatche…...
SoloX:Android和iOS性能数据的实时采集工具
SoloX:Android和iOS性能数据的实时采集工具 github地址:https://github.com/smart-test-ti/SoloX 最新版本:V2.7.6 一、SoloX简介 SoloX是开源的Android/iOS性能数据的实时采集工具,目前主要功能特点: 无需ROOT/越狱…...
【知识点随笔分析 | 第五篇】简单介绍什么是QUIC
前言: 随着互联网的快速发展,传统的基于TCP的协议开始显现出一些局限性。TCP在连接建立和拥塞控制方面存在一定的延迟,这可能导致用户在访问网页、观看视频或玩网络游戏时感受到不必要的等待时间。而QUIC作为一种新兴的传输协议,试…...
vscode ssh 远程免密登录开发
存放代码的机器运行 sshd, vscode 所在机器保证可以通过 ssh 登录服务器vscode 机器通过 ssh-keygen 生成 ssh 公私钥对(已有可以忽略)将客户端的 id_rsa.pub 加入到服务器的鉴权队列 cat id_rsa.pub >> authorized_keysvscode 配置ssh登录即可.ctrlp, remote-ssh: open …...
辅助驾驶功能开发-测试篇(2)-真值系统介绍
1 真值系统概述 1.1 真值评测系统核心应用 快速构建有效感知真值,快速完成感知性能评估,快速分析感知性能缺陷。 主要应用场景包括: 1. 感知算法开发验证: 在算法开发周期中,评测结果可以作为测试报告的一部分,体现算法性能的提升。 2. 遴选供应…...
运行程序时msvcr110.dll丢失的解决方法,msvcr110.dll丢失5的个详细解决方法
在使用电脑的过程中,我们经常会遇到各种问题,其中之一就是 msvcr110.dll 丢失的问题。msvcr110.dll 是 Microsoft Visual C Redistributable 的一个组件,用于支持使用 Visual C 编写的应用程序。如果您的系统中丢失了这个文件,您可…...
已解决 Bug——IndexError: index 3 is out of bounds for axis 0 with size 3问题
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页: 🐅🐾猫头虎的博客🎐《面试题大全专栏》 🦕 文章图文并茂🦖…...
WEB3 solidity 带着大家编写测试代码 操作订单 创建/取消/填充操作
好 在我们的不懈努力之下 交易所中的三种订单函数已经写出来了 但是 我们只是编译 确认了 代码没什么问题 但还没有实际的测试过 这个测试做起来 其实就比较的麻烦了 首先要有两个账号 且他们都要在交易所中有存入 我们还是先将 ganache 的虚拟环境启动起来 然后 我们在项目…...
c++-vector
文章目录 前言一、vector介绍二、vector使用1、构造函数2、vector 元素访问3、vector iterator 的使用4、vector 空间增长问题5、vector 增删查改6、理解vector<vector< int >>7、电话号码的字母组合练习题 三、模拟实现vector1、查看STL库源码中怎样实现的vector2…...
十四天学会C++之第二天(函数和库)
1. 函数的定义和调用 在C中,函数是组织和结构化代码的关键工具之一。它们允许您将一段代码封装成一个可重复使用的模块,这有助于提高代码的可读性和维护性。 为什么使用函数? 函数在编程中的作用不可小觑。它们有以下几个重要用途…...
蓝桥杯每日一题2023.10.3
杨辉三角形 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 40分写法: 可以自己手动构造一个杨辉三角,然后进行循环,用cnt记录下循环数的个数,看哪个数与要找的数一样,输出cnt #include<bits/stdc.h> using na…...
JavaScript系列从入门到精通系列第十二篇:JavaScript中对象的简介和对象的基本操作以及JavaScript中的属性值和属性名
文章目录 前言 一:对象分类 1:内建对象 2:宿主对象 3:自建对象 二:对象的基本操作 1:创建对象 2:向对象中添加属性 3:读取对象中的属性 4:修改对象中的属性 三…...
OpenCV实现视频的追踪(meanshift、Camshift)
目录 1,meanshift 1.1 算法流程 1.2 算法实现 1.3 代码实现 1.4 结果展示 1,meanshift 1.1 算法流程 1.2 算法实现 1.3 代码实现 import numpy as np import cv2 as cv# 读取视频 cap cv.VideoCapture(video.mp4)# 检查视频是否成功打开 if n…...
并查集详解(原理+代码实现+应用)
文章目录 1. 并查集概念2. 并查集原理2.1 合并2.1 找根 3. 并查集实现3.1 结构定义3.2 FindRoot(找根)3.3 Union(合并)3.4 IsInSet(判断两个值是否在一个集合里)3.5 SetCount(并查集中集合个数&…...
第k小的数
补充习题: 第k小的数 问题描述 有两个正整数数列,元素个数分别为 N N N和 M M M.从两个数列中分别任取一个数相乘,这样一共可以得到 N M N\times M NM个数,询问这 N M N\times M NM个数中第 K K K小的数是多少. 数据范围: N , M < 200000 , K < 2.1 ∗ 1 0 10 , …...
基于electron25+vite4创建多窗口|vue3+electron25新开模态窗体
在写这篇文章的时候,查看了下electron最新稳定版本由几天前24.4.0升级到了25了,不得不说electron团队迭代速度之快! 前几天有分享一篇electron24整合vite4全家桶技术构建桌面端vue3应用示例程序。 https://www.cnblogs.com/xiaoyan2017/p/17…...
红米手机 导出 通讯录 到电脑保存
不要搞什么 云服务 不要安装什么 手机助手 不要安装 什么app 用 usb 线 连接 手机 和 电脑 手机上会跳出 提示 选择 仅传输文件 会出现下面的 一个 盘 进入 MIUI目录 然后进入 此电脑\Redmi Note 5\内部存储设备\MIUI\backup\AllBackup\20230927_043337 如何没有上面的文件&a…...
常见web信息泄露
一、源码(备份文件)泄露 1、git泄露 Git是一个开源的分布式版本控制系统,在执行git init初始化目录的时候,会在当前目录下自动创建一个.git目录,用来记录代码的变更记录等。发布代码的时候,如果没有把.git这个目录删除ÿ…...
找不到VCRUNTIME140_1.dll怎么办,VCRUNTIME140_1.dll丢失的5个解决方法
在当今的数字时代,我们的生活和工作都离不开电脑。然而,随着科技的发展,我们也会遇到各种各样的问题。其中,VCRUNTIME140_1.dll丢失的问题是许多人都会遇到的困扰。这个问题可能会导致许多应用程序无法正常运行,给我们…...
C#生成自定义海报
安装包 SixLabors.ImageSharp.Drawing 2.0 需要的字体:宋体和微软雅黑 商用的需要授权如果商业使用可以使用方正书宋、方正黑体,他们可以免费商用 方正官网 代码 using SixLabors.Fonts; using SixLabors.ImageSharp; using SixLabors.ImageSharp.Draw…...
BP神经网络的MATLAB实现(含源代码)
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一 具体数学推导以及原理在本文不做详细介绍,本文将使用MATLAB进行B…...
AES和Rijndael的区别
快速链接: . 👉👉👉 个人博客笔记导读目录(全部) 👈👈👈 付费专栏-付费课程 【购买须知】:密码学实践强化训练–【目录】 👈👈👈“Rijndael” 这个词的中文谐音可以近似地发音为 “瑞恩达尔”。请注意,这只是一种近似的发音方式,因为该词是荷兰姓氏 “Ri…...
【数据结构】—堆详解(手把手带你用C语言实现)
食用指南:本文在有C基础的情况下食用更佳 🔥这就不得不推荐此专栏了:C语言 ♈️今日夜电波:水星—今泉愛夏 1:10 ━━━━━━️💟──────── 4:23 …...
关于算法复杂度的几张表
算法在改进今天的计算机与古代的计算机的区别 去除冗余 数据点 算法复杂度 傅里叶变换...
蓝桥杯每日一题2023.10.1
路径 - 蓝桥云课 (lanqiao.cn) 题目分析 求最短路问题,有多种解法,下面介绍两种蓝桥杯最常用到的两种解法 方法一 Floyd(求任意两点之间的最短路)注:不能有负权回路 初始化每个点到每个点的距离都为0x3f这样才能对…...
第三章:最新版零基础学习 PYTHON 教程(第十节 - Python 运算符—Python 中的运算符重载)
运算符重载意味着赋予超出其预定义操作含义的扩展含义。例如,运算符 + 用于添加两个整数以及连接两个字符串和合并两个列表。这是可以实现的,因为“+”运算符被 int 类和 str 类重载。您可能已经注意到,相同的内置运算符或函数对于不同类的对象显示不同的行为,这称为运算符…...
瑞安网站网站建设/企业网络营销策划书
jquery 插件教程10个很棒的RSS和XML插件和教程,可帮助您立即建立Feed并在您的网页或博客上运行 ! 了解有关RSS供稿和XML / XSLT的更多信息,请查看下面的一些教程! 相关文章: 实时RSS Feed阅读器演示 jQuery模拟RSS F…...
dz门户做视频网站/临沂seo排名外包
点击上方“蓝色字”可关注我们! 暴走时评:新加坡在区块链方面的工作一直是业内人士关注的重点之一,其如火如荼的项目发展及良好的商业环境使其拥有非常好的区块链氛围。KyberNetwork的创始人Loi Luu撰写了此文,对新加坡的区块链景…...
网站建设 网页制作/seo01
法则一、做自己喜欢做的事,然后把他做到最好! 法则二、要以成为行业中的世界顶尖为目标 法则三、成功者要有远大的理想,但要有合理的目标 法则四、你到底是想要成功还是一定要成功 法则五、每一天都要不断的检讨自己的工作和绩效 法则六、一定…...
查看网站外链/如何优化seo技巧
目录 总结 一、BFS算法的性能分析 1.空间复杂度 2.时间复杂度 二、DFS算法的性能分析 1.空间复杂度 2.时间复杂度 三、 Prim (普里姆)算法的性能分析 Prim (普里姆)算法时间复杂度 四、Dijkstra迪杰斯特拉算法的性能分析 Dijkstra迪杰斯特拉算法时间复杂度 总结 BFS…...
如何做网站首页优化/高粱seo博客
日期内核版本架构作者GitHubCSDN2016-05-12Linux-4.6X86 & armgatiemeLinuxDeviceDriversLinux进程管理与调度 Linux进程的退出 linux下进程退出的方式 正常退出 从main函数返回return调用exit调用_exit 异常退出 调用abort由信号终止 _exit, exit和_Exit的区别和联系…...
网页制作免费网站/温州seo顾问
信号量的本质是一种数据操作锁,它本身不具有数据交换的功能,而是通过控制其他的通信资源(文件,外部设备)来实现进程间通信, 它本身只是一种外部资源的标识。信号量在此过程中负责数据操作的互斥、同步等功能…...