离散无记忆与有记忆信源的序列熵
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。
文章目录
- 离散无记忆信源的序列熵
- 信源的序列熵
- 离散有记忆信源的序列熵
- 平稳有记忆N次扩展源的熵
离散无记忆信源的序列熵

马尔可夫信源的特点:无后效性。
发出单个符号的信源
- 指信源每次只发出一个符号代表一个消息;
发出符号序列的信源
- 指信源每次发出一组含二个以上符号的符号序列代表一个消息。
当信源无记忆时:
p(Xˉ=xi)=p(xi1,xi2,⋯,xiL)=p(xi1)p(xi2)p(xi3)⋯p(xiL)=∏l=1Lp(xil)\begin{aligned} p(\bar{X}&\left.=x_{i}\right)=p\left(x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{L}}\right) =p\left(x_{i_{1}}\right) p\left(x_{i_{2}}\right) p\left(x_{i_{3}}\right) \cdots p\left(x_{i_{L}}\right)=\prod_{l=1}^{L} p\left(x_{i_{l}}\right) \end{aligned} p(Xˉ=xi)=p(xi1,xi2,⋯,xiL)=p(xi1)p(xi2)p(xi3)⋯p(xiL)=l=1∏Lp(xil)
信源的序列熵
H(Xˉ)=−∑i=1nLp(xi)logp(xi)=−∑i∏l=1Lp(xii)logp(xii)=∑l=1LH(Xl)\begin{aligned} H(\bar{X}) &=-\sum_{i=1}^{n^{L}} p\left(x_{i}\right) \log p\left(x_{i}\right) \\ &=-\sum_{i} \prod_{l=1}^{L} p\left(x_{i_{i}}\right) \log p\left(x_{i_{i}}\right)=\sum_{l=1}^{L} H\left(X_{l}\right) \end{aligned} H(Xˉ)=−i=1∑nLp(xi)logp(xi)=−i∑l=1∏Lp(xii)logp(xii)=l=1∑LH(Xl)
-
若又满足平稳特性(平稳信号包含的信息量小,其统计特性随时间不变化),即与序号l无关时:
p(X‾)=∏l=1Lp(xii)=pLp(\overline{\mathrm{X}})=\prod_{l=1}^{L} p\left(x_{i_{\mathrm{i}}}\right)=p^{L} p(X)=l=1∏Lp(xii)=pL
-
信源的序列熵
H(X‾)=LH(X)H(\overline{\mathrm{X}})=\operatorname{LH}(X) H(X)=LH(X)
-
平均每个符号(消息)熵(符号熵) 为
HL(Xˉ)=1LH(Xˉ)=H(X)H_{L}(\bar{X})=\frac{1}{L} H(\bar{X})=H(X) HL(Xˉ)=L1H(Xˉ)=H(X)
例: 有一个无记忆信源随机变量 X∈(0,1)\mathrm{X} \in(0,1)X∈(0,1) , 等概率分布, 若以单个符号出现为一事件, 则此时的信源熵:
H(X)=log22=1H(X)=\log _{2} 2=1H(X)=log22=1 bit/符号
即用 1 比特就可表示该事件。
如果以两个符号出现 (L=2\mathrm{L}=2L=2 的序列 )为一事件, 则随机序 列 X∈(00,01,10,11)\mathrm{X} \in(00,01,10,11)X∈(00,01,10,11) , 信源的序列熵
H(Xˉ)=log24=2H(\bar{X})=\log _{2} 4=2H(Xˉ)=log24=2 bit/序列
即用2比特才能表示该事件。
信源的符号熵
H2(X‾)=12H(X‾)=1H_{2}(\overline{\mathrm{X}})=\frac{1}{2} H(\overline{\mathrm{X}})=1H2(X)=21H(X)=1 bit/符号
- 信源的序列熵
H(X‾)=H(XL)=−∑i=19p(ai)logp(ai)=3bit/序列 H(\overline{\mathrm{X}})=H\left(X^{L}\right)=-\sum_{i=1}^{9} p\left(a_{i}\right) \log p\left(a_{i}\right)=3 b i t / \text { 序列 }H(X)=H(XL)=−∑i=19p(ai)logp(ai)=3bit/ 序列
- 平均每个符号 (消息) 熵为
H(X)=−∑i=13p(xi)logp(xi)=1.5bit/符号 H(Xˉ)=2H(X)=2×1.5=3bit/序列 \begin{array}{c} H(X)=-\sum_{i=1}^{3} p\left(x_{i}\right) \log p\left(x_{i}\right)=1.5 \text { bit/符号 } \\ H(\bar{X})=2 H(X)=2 \times 1.5=3 \mathrm{bit} / \text { 序列 } \end{array}H(X)=−∑i=13p(xi)logp(xi)=1.5 bit/符号 H(Xˉ)=2H(X)=2×1.5=3bit/ 序列
离散有记忆信源的序列熵
-
对于有记忆信源,就不像无记忆信源那样简单, 它必须引入条件熵的概念, 而且只能在某些特殊情况下才能得到一些有价值的结论。
-
对于由两个符号组成的联合信源, 有下列结论:
H(X1X2)=H(X1)+H(X2∣X1)=H(X2)+H(X1∣X2)H\left(X_{1} X_{2}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)=H\left(X_{2}\right)+H\left(X_{1} \mid X_{2}\right) H(X1X2)=H(X1)+H(X2∣X1)=H(X2)+H(X1∣X2)H(X1)≥H(X1∣X2),H(X2)≥H(X2∣X1)H\left(X_{1}\right) \geq H\left(X_{1} \mid X_{2}\right), H\left(X_{2}\right) \geq H\left(X_{2} \mid X_{1}\right) H(X1)≥H(X1∣X2),H(X2)≥H(X2∣X1)
-
当前后符号无依存关系时,有下列推论:
H(X1X2)=H(X1)+H(X2)H(X1∣X2)=H(X1),H(X2∣X1)=H(X2)\begin{array}{l} H\left(X_{1} X_{2}\right)=H\left(X_{1}\right)+H\left(X_{2}\right) \\ H\left(X_{1} \mid X_{2}\right)=H\left(X_{1}\right), H\left(X_{2} \mid X_{1}\right)=H\left(X_{2}\right) \end{array} H(X1X2)=H(X1)+H(X2)H(X1∣X2)=H(X1),H(X2∣X1)=H(X2) -
若信源输出一个L长序列,则信源的序列熵为
H(X‾)=H(X1X2⋯XL)=H(X1)+H(X2∣X1)+⋯+H(XL∣XL−1⋯X1)=∑lLH(Xl∣Xl−1)=H(XL)\begin{aligned} H(\overline{\mathrm{X}}) &=H\left(X_{1} X_{2} \cdots X_{L}\right) \\ &=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\cdots+H\left(X_{L} \mid X_{L-1} \cdots X_{1}\right) \\ &=\sum_{l}^{L} H\left(X_{l} \mid X^{l-1}\right)=H\left(X^{L}\right) \end{aligned} H(X)=H(X1X2⋯XL)=H(X1)+H(X2∣X1)+⋯+H(XL∣XL−1⋯X1)=l∑LH(Xl∣Xl−1)=H(XL)
-
平均每个符号的熵为:
HL(Xˉ)=1LH(XL)H_{L}(\bar{X})=\frac{1}{L} H\left(X^{L}\right) HL(Xˉ)=L1H(XL)
-
若当信源退化为无记忆时: 若进一步又满足平稳性时
H(Xˉ)=∑lLH(Xl)H(Xˉ)=LH(X)H(\bar{X})=\sum_{l}^{L} H\left(X_{l}\right) \quad H(\bar{X})=L H(X) H(Xˉ)=l∑LH(Xl)H(Xˉ)=LH(X)
平稳有记忆N次扩展源的熵
设 X\mathbf{X}X 为离散平稳有记忆信源, X\mathbf{X}X 的 N\mathbf{N}N 次扩展源记为 XNX^{N}XN ,
XN=[X1X2⋯XN]X^{N}=\left[X_{1} X_{2} \cdots X_{N}\right] XN=[X1X2⋯XN]
根据熵的可加性,得
H(XN)=H(X1X2⋯XN)=H(X1)+H(X2/X1)+⋯H(XN/X1⋯XN−1)H\left(X^{N}\right)=H\left(X_{1} X_{2} \cdots X_{N}\right)=H\left(X_{1}\right)+H\left(X_{2} / X_{1}\right)+\cdots H\left(X_{N} / X_{1} \cdots X_{N-1}\right) H(XN)=H(X1X2⋯XN)=H(X1)+H(X2/X1)+⋯H(XN/X1⋯XN−1)
根据平稳性和熵的不增原理,得H(XN)≤NH(X1)H\left(X^{N}\right) \leq N H\left(X_{1}\right)H(XN)≤NH(X1), 仅当无记忆信源时等式成立。
对于 X\mathrm{X}X 的 N\mathrm{N}N 次扩展源, 定义平均符号熵为:
HN(X)=1NH(XN)=1NH(X1⋯XN)H_{N}(X)=\frac{1}{N} H\left(X^{N}\right)=\frac{1}{N} H\left(X_{1} \cdots X_{N}\right) HN(X)=N1H(XN)=N1H(X1⋯XN)
信源 X\mathrm{X}X 的极限符号熵定义为:
H∞(X)=limN→∞1NH(XN)=limN→∞1NH(X1⋯XN)H_{\infty}(X)=\lim _{N \rightarrow \infty} \frac{1}{N} H(X^{N})=\lim _{N \rightarrow \infty} \frac{1}{N} H(X_{1} \cdots X_{N}) H∞(X)=N→∞limN1H(XN)=N→∞limN1H(X1⋯XN)
极限符号熵简称符号熵, 也称熵率。
定理: 对任意离散平稳信源, 若 H1(X)<∞H_{1}(X)<\inftyH1(X)<∞ , 有:
(1) H(XN/X1⋯XN−1)H\left(X_{N} / X_{1} \cdots X_{N-1}\right)H(XN/X1⋯XN−1) 不随 N\mathbf{N}N而增加;
(2) HN(X)≥H(XN/X1⋯XN−1);H_{N}(X) \geq H\left(X_{N} / X_{1} \cdots X_{N-1}\right) ;HN(X)≥H(XN/X1⋯XN−1);
(3)HN(X)H_{N}(X)HN(X) 不随 N 而增加;
(4) H∞(X)H_{\infty}(X)H∞(X) 存在,且 H∞(X)=limN→∞H(XN/X1⋯XN−1)H_{\infty}(X)=\lim _{N \rightarrow \infty} H(X_{N} / X_{1} \cdots X_{N-1})H∞(X)=limN→∞H(XN/X1⋯XN−1)
该式表明, 有记忆信源的符号熵也可通过计算极限条件熵得到。
参考文献:
- Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
- 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
- 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
相关文章:
离散无记忆与有记忆信源的序列熵
本专栏包含信息论与编码的核心知识,按知识点组织,可作为教学或学习的参考。markdown版本已归档至【Github仓库:information-theory】,需要的朋友们自取。或者公众号【AIShareLab】回复 信息论 也可获取。 文章目录离散无记忆信源的…...
算法该不该刷?如何高效刷算法?
一、算法该不该刷?最近有小伙伴向我咨询一个问题,就是算法该不该刷,该如何刷算法呢?这个问题可谓太大众化了,只要你去某乎、某度搜索一下相关的解答,会有无数种回答,可见这个问题困扰了多少学习…...
Allegro如何在关闭飞线模式下查看网络连接位置操作指导
Allegro如何在关闭飞线模式下查看网络连接位置操作指导 在用Allegro做PCB设计的时候,有时会因为设计需要,关闭飞线显示。 如何在关闭飞线显示模式下查看网络连接的位置,如下图 除了能看到网络连接的点位以外,还能看到器件的pin Number 如何显示出这种效果,具体操作如下 …...
啊哈 算法读书笔记 第 1 章 一大波数正在靠近——排序
目录 排序算法: 时间复杂度: 排序算法和冒泡排序之间的过渡: 冒泡排序 冒泡排序和快速排序之间的过渡: 快速排序 排序算法: 首先出场的是我们的主人公小哼,上面这个可爱的娃就是啦。期末考试完了老…...
Servlet笔记(5):HTTP请求与响应
1、HTTP请求 当浏览器请求网页时,它会向Web服务器发送特定信息,这些信息不能被直接读取,而是通过传输HTTP请求时,封装进请求头中。 有哪些头信息? 头信息描述Accept这个头信息指定浏览器或其他客户端可以处理的 MIME…...
信号的运算与变换
目录 前言 本章内容介绍 信号的运算与变换 相加 相乘 时移 反折 尺度变换 微分(差分) 积分(累加) 信号的奇偶求解 信号的实虚分解 合适的例题 1、时移反折 2、时移尺度 3、时移反折尺度 4、反求x(t) 前言 《信号…...
【GO】K8s 管理系统项目9[API部分--Secret]
K8s 管理系统项目[API部分–Secret] 1. 接口实现 service/dataselector.go // secret type secretCell corev1.Secretfunc (s secretCell) GetCreation() time.Time {return s.CreationTimestamp.Time }func (s secretCell) GetName() string {return s.Name }2. Secret功能…...
ESP32 Arduino EspNow点对点双向通讯
ESP32 Arduino EspNow点对点双向通讯✨本案例分别采用esp32和esp32C3之间点对点单播无线通讯方式。 🌿esp32开发板 🌾esp32c3开发板 🔧所需库(需要自行导入到Arduino IDE library文件夹中,无法在IDE 管理库界面搜索下载到该库)&am…...
Linux SID 开发指南
Linux SID 开发指南 1 前言 1.1 编写目的 介绍Linux 内核中基于Sunxi 硬件平台的SID 模块驱动的详细设计,为软件编码和维护提供基 础。 1.2 适用范围 内核版本Linux-5.4, Linux-4.9 的平台。 1.3 相关人员 SID 驱动、Efuse 驱动、Sysinfo 驱动的维护、应用开…...
Matlab进阶绘图第2期—线型热图
线型热图由共享X轴的多条渐变直线组成,其颜色表示某一特征值。 与传统热图相比,线型热图适应于X轴数据远多于Y轴(条数)的情况,可以很好地对不同组数据间的分布情况进行比较,也因此可以在一些期刊中看到它的…...
【Redis中bigkey你了解吗?bigkey的危害?】
一.Redis中bigkey你了解吗?bigkey的危害? 如果面试官问到了这个问题,不必惊慌,接下来我们从什么是bigkey?bigkey划分的类型?bigkey危害之处? 二.什么是bigkey?会有什么影响ÿ…...
C++回顾(一)——从C到C++
前言 在学习了C语言的基础上,C到底和C有什么区别呢? 1.1 第一个C程序 #include <iostream>// 使用名为std的命名空间 using namespace std;int main() {// printf ("hello world\n");// cout 标准输出 往屏幕打印内容 相当于C语言的…...
CRF条件随机场 | 关键原理+面试知识点
😄 CRF之前跟人生导师:李航学习过,这里结合自己的理解,精简一波CRF,总结一下面试中高频出现的要点。个人觉得没网上说的那么复杂,我看网上很大部分都是一长篇先举个例子,然后再说原理。没必要原理其实不难,直接从原理下手更好理解。 文章目录 1、概率无向图(马尔可夫…...
秒懂算法 | 回归算法中的贝叶斯
在本文中,我们会用概率的观点来看待机器学习模型,用简单的例子帮助大家理解判别式模型和生成式模型的区别。通过思考曲线拟合的问题,发现习以为常的损失函数和正则化项背后有着深刻的意义 01、快速理解判别式模型和生成式模型 从概率的角度来理解数据有着两个不同的角度,假…...
用Netty实现物联网01:XML-RPC和JSON-RPC
最近十年,物联网和云计算、人工智能等技术一道,受到业内各方追捧,被炒得火热,甚至还诞生了AIoT这样的技术概念。和(移动)互联网不同,物联网针对的主要是一些资源有限的硬件设备,比如监控探头、烟雾感应器、温湿度感应器、车载OBD诊断器、智能电表、智能血压计等。这些硬…...
腾讯云服务器centos7安装python3.7+,解决ssl问题
使用requests模块访问百度,报错如下: requests.exceptions.SSLError: HTTPSConnectionPool(hostwww.baidu.com, port443): Max retries exceeded with url: / (Caused by SSLError("Cant connect to HTTPS URL because the SSL module is not avail…...
C++【模板STL简介】
文章目录C模板&&STL初阶一、泛型编程二、函数模板2.1.函数模板概念2.2.函数模板格式2.3.函数模板的实例化2.4.模板参数的匹配原则三、 类模板3.1.模板的定义格式3.2.类模板的实例化STL简介一、STL的概念、组成及缺陷二、STL的版本C模板&&STL初阶 一、泛型编程…...
该学会是自己找bug了(vs调试技巧)
前言 🎈个人主页:🎈 :✨✨✨初阶牛✨✨✨ 🐻推荐专栏: 🍔🍟🌯 c语言初阶 🔑个人信条: 🌵知行合一 🍉本篇简介:>:介绍c语言初阶的最后一篇.有关调试的重要性. 金句分享…...
Redis大全(概念与下载安装)
目录 一、概念 1.非关系型数据库(NoSQL)的介绍 2.什么是redis 3.redis的作者 4.Redis的特点 5.redis的应用场景 6.高度概括知识 一、二 缓存穿透、缓存击穿、缓存雪崩的概念 (一)缓存穿透 (二)缓…...
指针的进阶【上篇】
文章目录📀1.字符指针📀2.指针数组📀3.数组指针💿3.1.数组指针的定义💿3.2. &数组名VS数组名💿3.3.数组指针的使用📀1.字符指针 int main() {char ch w;char* pc &ch;// pc就是字符指…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
从实验室到产业:IndexTTS 在六大核心场景的落地实践
一、内容创作:重构数字内容生产范式 在短视频创作领域,IndexTTS 的语音克隆技术彻底改变了配音流程。B 站 UP 主通过 5 秒参考音频即可克隆出郭老师音色,生成的 “各位吴彦祖们大家好” 语音相似度达 97%,单条视频播放量突破百万…...
大数据驱动企业决策智能化的路径与实践
📝个人主页🌹:慌ZHANG-CSDN博客 🌹🌹期待您的关注 🌹🌹 一、引言:数据驱动的企业竞争力重构 在这个瞬息万变的商业时代,“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...
el-amap-bezier-curve运用及线弧度设置
文章目录 简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介 el-amap-bezier-curve 是 Vue-Amap 组件库中的一个组件,用于在 高德地图 上绘制贝塞尔曲线。 基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke…...
