Ultra-Fast-Lane-Detection-v2 {后处理优化}//参考
采用三次多项式拟合生成的anchor特征点,在给定的polyfit_draw
函数中,degree
参数代表了拟合多项式的度数。
具体来说,当我们使用np.polyfit
函数进行数据点的多项式拟合时,我们需要指定一个度数。这个度数决定了多项式的复杂度。例如:
-
degree = 1
:线性拟合,也就是最简单的直线拟合。拟合的多项式形式为 f(y)=ax+b。 -
degree = 2
:二次多项式拟合。拟合的多项式形式为 f(y)=ax2+bx+c。 -
degree = 3
:三次多项式拟合。拟合的多项式形式为 f(y)=ax3+bx2+cx+d。
...以此类推。
度数越高,多项式越复杂,可以更准确地拟合数据点,但也更容易过拟合(即模型过于复杂,过于依赖训练数据,对新数据的适应性差)。
import torch, os, cv2
from utils.dist_utils import dist_print
import torch, os
from utils.common import merge_config, get_model
import tqdm
import torchvision.transforms as transforms
from data.dataset import LaneTestDatasetdef pred2coords(pred, row_anchor, col_anchor, local_width = 1, original_image_width = 1640, original_image_height = 590):batch_size, num_grid_row, num_cls_row, num_lane_row = pred['loc_row'].shapebatch_size, num_grid_col, num_cls_col, num_lane_col = pred['loc_col'].shapemax_indices_row = pred['loc_row'].argmax(1).cpu()# n , num_cls, num_lanesvalid_row = pred['exist_row'].argmax(1).cpu()# n, num_cls, num_lanesmax_indices_col = pred['loc_col'].argmax(1).cpu()# n , num_cls, num_lanesvalid_col = pred['exist_col'].argmax(1).cpu()# n, num_cls, num_lanespred['loc_row'] = pred['loc_row'].cpu()pred['loc_col'] = pred['loc_col'].cpu()coords = []row_lane_idx = [1,2]col_lane_idx = [0,3]for i in row_lane_idx:tmp = []if valid_row[0,:,i].sum() > num_cls_row / 2:for k in range(valid_row.shape[1]):if valid_row[0,k,i]:all_ind = torch.tensor(list(range(max(0,max_indices_row[0,k,i] - local_width), min(num_grid_row-1, max_indices_row[0,k,i] + local_width) + 1)))out_tmp = (pred['loc_row'][0,all_ind,k,i].softmax(0) * all_ind.float()).sum() + 0.5out_tmp = out_tmp / (num_grid_row-1) * original_image_widthtmp.append((int(out_tmp), int(row_anchor[k] * original_image_height)))coords.append(tmp)for i in col_lane_idx:tmp = []if valid_col[0,:,i].sum() > num_cls_col / 4:for k in range(valid_col.shape[1]):if valid_col[0,k,i]:all_ind = torch.tensor(list(range(max(0,max_indices_col[0,k,i] - local_width), min(num_grid_col-1, max_indices_col[0,k,i] + local_width) + 1)))out_tmp = (pred['loc_col'][0,all_ind,k,i].softmax(0) * all_ind.float()).sum() + 0.5out_tmp = out_tmp / (num_grid_col-1) * original_image_heighttmp.append((int(col_anchor[k] * original_image_width), int(out_tmp)))coords.append(tmp)return coordsdef polyfit_draw(img, coords, degree=3, color=(144, 238, 144), thickness=2):"""对车道线坐标进行多项式拟合并在图像上绘制曲线。:param img: 输入图像:param coords: 车道线坐标列表:param degree: 拟合的多项式的度数:param color: 曲线的颜色:param thickness: 曲线的宽度:return: 绘制了曲线的图像"""if len(coords) == 0:return imgx = [point[0] for point in coords]y = [point[1] for point in coords]# 对点进行多项式拟合coefficients = np.polyfit(y, x, degree)poly = np.poly1d(coefficients)ys = np.linspace(min(y), max(y), 100)xs = poly(ys)for i in range(len(ys) - 1):start_point = (int(xs[i]), int(ys[i]))end_point = (int(xs[i+1]), int(ys[i+1]))cv2.line(img, start_point, end_point, color, thickness)return imgif __name__ == "__main__":torch.backends.cudnn.benchmark = Trueargs, cfg = merge_config()cfg.batch_size = 1print('setting batch_size to 1 for demo generation')dist_print('start testing...')assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']if cfg.dataset == 'CULane':cls_num_per_lane = 18elif cfg.dataset == 'Tusimple':cls_num_per_lane = 56else:raise NotImplementedErrornet = get_model(cfg)state_dict = torch.load(cfg.test_model, map_location='cpu')['model']compatible_state_dict = {}for k, v in state_dict.items():if 'module.' in k:compatible_state_dict[k[7:]] = velse:compatible_state_dict[k] = vnet.load_state_dict(compatible_state_dict, strict=False)net.eval()img_transforms = transforms.Compose([transforms.Resize((int(cfg.train_height / cfg.crop_ratio), cfg.train_width)),transforms.ToTensor(),transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),])if cfg.dataset == 'CULane':splits = ['test0_normal.txt']datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms, crop_size = cfg.train_height) for split in splits]img_w, img_h = 1570, 660elif cfg.dataset == 'Tusimple':splits = ['test.txt']datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms, crop_size = cfg.train_height) for split in splits]img_w, img_h = 1280, 720else:raise NotImplementedErrorfor split, dataset in zip(splits, datasets):loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1)fourcc = cv2.VideoWriter_fourcc(*'MJPG')print(split[:-3]+'avi')vout = cv2.VideoWriter('4.'+'avi', fourcc , 30.0, (img_w, img_h))for i, data in enumerate(tqdm.tqdm(loader)):imgs, names = dataimgs = imgs.cuda()with torch.no_grad():pred = net(imgs)vis = cv2.imread(os.path.join(cfg.data_root,names[0]))coords = pred2coords(pred, cfg.row_anchor, cfg.col_anchor, original_image_width = img_w, original_image_height = img_h)for lane in coords:
# for coord in lane:
# cv2.circle(vis,coord,1,(0,255,0),-1)
# vis = draw_lanes(vis, coords)
# polyfit_draw(vis, lane)vis = polyfit_draw(vis, lane) # 对每一条车道线都使用polyfit_draw函数vout.write(vis)vout.release()
ps:
优化前
优化后
显存利用情况
相关文章:

Ultra-Fast-Lane-Detection-v2 {后处理优化}//参考
采用三次多项式拟合生成的anchor特征点,在给定的polyfit_draw函数中,degree参数代表了拟合多项式的度数。 具体来说,当我们使用np.polyfit函数进行数据点的多项式拟合时,我们需要指定一个度数。这个度数决定了多项式的复杂度。例…...
【面试题精讲】Java静态方法和实例方法有何不同?
★ 有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准https://blog.zysicyj.top ” 首发博客地址[1] 面试题手册[2] 系列文章地址[3] Java 中的静态方法和实例方法在使用和行为上有一些不同之处。 调用方式不同: 静…...

【数据结构】布隆过滤器
布隆过滤器的提出 在注册账号设置昵称的时候,为了保证每个用户昵称的唯一性,系统必须检测你输入的昵称是否被使用过,这本质就是一个key的模型,我们只需要判断这个昵称被用过,还是没被用过。 方法一:用红黑…...
linux基础4---内存
1、什么是内存泄漏,怎么解决内存泄漏? 在嵌入式Linux中,内存泄漏是指由于疏忽或错误,导致一些对象或资源无法被垃圾回收器回收,从而导致内存占用不断增加,最终导致设备性能下降。内存泄漏对程序的影响很大,可能会导致应用程序变慢、崩溃或者消耗大量的内存,最终导致设…...
图论---拓扑排序
概念 一个有向图,如果图中有入度为 0 的点,就把这个点删掉,同时也删掉这个点所连的边。一直进行上面的处理,如果所有点都能被删掉,则这个图可以进行拓扑排序。拓扑排序是对DAG(有向无环图)上的节…...

java Spring Boot 将日志写入文件中记录
我们之前的一套操作来讲 日志都是在控制台上的 但 如果你的项目在正式环境上跑 运维人员突然告诉你说日志报错了,但你日志只在控制台上,那公司项目如果访问量很大 那你是很难在控制台上找到某一条日志的 这时 我们就可以用文件把它记下来 我们打开项目 …...

Android 开发错误集合
🔥 开发错误集合一 🔥 Caused by: java.lang.ClassNotFoundException: Didnt find class "com.mask.app.ui.LoginRegisterActivity" on path: DexPathList[[zip file "/data/app/~~NMvHVhj8V6-HwGbh2amXDA/com.mask.app-PWbg4xIlETQ3eVY…...
VSCode个人设置习惯
账号登陆同步 点击左下角齿轮或者用户头像–>Turn on Settings Sync–>全选–>Sign in &Turn on。 可以同步配置、快捷键、插件、用户代码片段、UI状态 Windows下将powershell改为cmd 在vscode打开集成终端,点击右上角加号右边的下拉菜单,…...
代码随想录训练营二刷第四十七天 | 70. 爬楼梯 (进阶) 322. 零钱兑换 279.完全平方数
代码随想录训练营二刷第四十七天 | 70. 爬楼梯 (进阶) 322. 零钱兑换 279.完全平方数 一、70. 爬楼梯 (进阶) 题目链接:https://leetcode.cn/problems/climbing-stairs/ 思路:物品是楼梯1和2,…...

beego-简单项目写法--后续放到git上
Beego案例-新闻发布系统 1.注册 后台代码和昨天案例代码一致。,所以这里面只写一个注册的业务流程图。 **业务流程图 ** 2.登陆 业务流程图 登陆和注册业务和我们昨天登陆和注册基本一样,所以就不再重复写这个代码 但是我们遇到的问题是如何做代码的迁移&…...

【算法|动态规划No.9】leetcodeLCR 091. 粉刷房子
个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望…...

基于SpringBoot的图书进销存管理系统
目录 前言 一、技术栈 二、系统功能介绍 用户信息管理 图书类型管理 商品退货管理 客户信息管理 图书添加 客户添加 应收金额 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实…...

回归预测 | MATLAB实现PSO-SVR粒子群优化支持向量机回归多输入单输出预测
回归预测 | MATLAB实现PSO-SVR粒子群优化支持向量机回归多输入单输出预测 目录 回归预测 | MATLAB实现PSO-SVR粒子群优化支持向量机回归多输入单输出预测预测效果基本介绍模型描述程序设计预测效果 <...
vue3使用v-model控制子组件进行双向数据绑定
vue2写法: 中父组件调用子组件: <child :isShow.sync"isShow" v-show"isShow"/> 子组件想要消失, 在子组件写: this.$emit("update:isShow",false); 具体代码就不粘贴了 vue3写法: 父组件核心代码: v-model:a"xxx" 子组…...
.netCore .net5,6,7 存日志文件
如果你使用 .netCore及以上版本(.net5,.net6,.net7)... 系统默认自带日志中间件(log4net) 对,就是上次java 日志大漏洞的兄弟....... 控制台自动打印日志就是它的功劳 现在我们想存日志文件,怎么办 很简单. 1.在项目中添加日志配置文件 文件名 : log4net.config 不能…...

【数据结构---排序】很详细的哦
本篇文章介绍数据结构中的几种排序哦~ 文章目录 前言一、排序是什么?二、排序的分类 1.直接插入排序2.希尔排序3.选择排序4.冒泡排序5.快速排序6.归并排序总结 前言 排序在我们的生活当中无处不在,当然,它在计算机程序当中也是一种很重要的操…...

GitHub爬虫项目详解
前言 闲来无事浏览GitHub的时候,看到一个仓库,里边列举了Java的优秀开源项目列表,包括说明、仓库地址等,还是很具有学习意义的。但是大家也知道,国内访问GitHub的时候,经常存在访问超时的问题,…...
辅助驾驶功能开发-功能对标篇(7)-NOA领航辅助系统-上汽荣威
1.横向对标参数 厂商上汽荣威车型荣威RX5(燃油车)上市时间2022Q3方案10V3R摄像头前视摄像头1*(8M)侧视摄像头4后视摄像头1环视摄像头4DMS摄像头1雷达毫米波雷达34D毫米波雷达/超声波雷达12激光雷达/域控供应商1*(宏景智驾)辅助驾驶软件供应商地平线高精度地图中海庭芯片J3合作…...
第0次 序言
突然想起有好多书没有看,或者看了也没留下任何记录,以后有空必须得好好整理才行,这次就从《Linux命令行和shell脚本编程大全开始》 本文完全是闲聊,自娱自乐,我觉得做开发是一件很快乐的事情,但是工作是开发…...
ESP32设备驱动-OLED显示单个或多个DS18B20传感器数据
OLED显示单个或多个DS18B20传感器数据 文章目录 OLED显示单个或多个DS18B20传感器数据1、DS18B20介绍2、硬件准备3、软件准备4、代码实现4.1 读取单个DS18B20数据4.2 驱动多个DS18B20传感器4.3 OLED显示DS18B20数据在本文中,我们将介绍如何ESP32驱动单个或多个DS18B20传感器,…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...