当前位置: 首页 > news >正文

《Secure Analytics-Federated Learning and Secure Aggregation》论文阅读

背景

机器学习模型对数据的分析具有很大的优势,很多敏感数据分布在用户各自的终端。若大规模收集用户的敏感数据具有泄露的风险。
对于安全分析的一般背景就是认为有n方有敏感数据,并且不愿意分享他们的数据,但可以分享聚合计算后的结果。
联邦学习是一种训练数据在多方训练,然后聚合结果得到最终的中心化模型。其中的关键就是多方结果的安全聚合。

风险模型

有很多用户,假设用户都是诚实但好奇的,即会遵守协议规则,但会通过拼凑数据获取敏感信息。换句话说就是恶意的,很可能执行不好的行为。

安全聚合
问题的定义、目标和假设

风险模型假设用户和中心服务器都是诚实且好奇的。如果用户是恶意的,他们有能力在不被监测的情况下影响聚合结果。
安全聚合协议:

  1. 操作高维向量;
  2. 不管计算中涉及到的用户子集,通信是高效的;
  3. 用户dropout是robust;
  4. 足够安全
第一次尝试:一次填充掩码

对于所有的用户,通过每个用户对 u , v u,v uv构建一个secret,具体逻辑:对所有用户进行排序,当用户 u < v u < v u<v构建一个 + s u , v +s_{u,v} +su,v,相反则构建一个 − s v , u -s_{v,u} sv,u,如下图:
请添加图片描述
当聚合的时候
∑ i = 1 3 = x 1 + s 1 , 2 + s 1 , 3 + x 2 − s 1 , 2 + s 2 , 3 + x 3 − s 1 , 3 − s 2 , 3 \sum_{i=1}^3=x_1+s_{1,2}+s_{1,3}+x_2-s_{1,2}+s_{2,3}+x_3-s_{1,3}-s_{2,3} i=13=x1+s1,2+s1,3+x2s1,2+s2,3+x3s1,3s2,3

缺点:

  1. 二次通信,每个用户对 u , v u, v u,v都需要产生他们的秘钥 s u , v s_{u,v} su,v
  2. 如果任何一个用户drop out,对于 ∑ ∀ i y i \sum_{\forall i}y_i iyi都会变成垃圾数据,从而本次不能聚合。
利用Diffie-Hellman秘钥交换改进二次通信

所有的用户商定一个大素数 p p p和一个基本数 g g g。用户将自己的公钥( g a u m o d p g^{a_{u}} \mod p gaumodp,其中 a u a_u au是用户的秘钥)发送给server,然后server广播一个公钥给其他的用户,其他用户使用自己的秘钥和该公钥进行计算,如:
u 1 : ( g a 2 ) a 1 m o d p = g a 1 a 2 m o d p = s 1 , 2 u_1:(g^{a_2})^{a_1}\quad mod \quad p = g^{a_1a_2}\quad mod \quad p=s_{1,2} u1(ga2)a1modp=ga1a2modp=s1,2
u 2 : ( g a 1 ) a 2 m o d p = g a 1 a 2 m o d p = s 1 , 2 u_2:(g^{a_1})^{a_2}\quad mod \quad p = g^{a_1a_2}\quad mod \quad p=s_{1,2} u2(ga1)a2modp=ga1a2modp=s1,2
Diffie-Hellman秘钥交换比上面的方法更简单、更高效。

第二次尝试:可恢复的一次性填充掩码

同上述方法类似,用户将他们加密后的向量 y u y_u yu发给server,然后server询问其他用户是否包含drop out的用户,是的话则取消他们的秘密绑定。如下图:请添加图片描述

该方法的缺点:

  1. 在recovery阶段发生额外的用户drop out,这将要求新drop out的用户也需要recovery,在大量用户的情况下,轮询次数将增加。
  2. 通信延迟导致server以为用户被drop out。因此,会想其他用户recovery秘钥,这导致server在接收到该用户的secret时,解密该用户的 x u x_u xu。如下图
    请添加图片描述
    因此,如果server是恶意的,则可以通过此方法获取用户的inputs

Shamir秘密分享
允许一个用户将秘密 s s s分享成 n n n个shares,然后任意 t t t个shares都能重构出秘密 s s s,而任意 t − 1 t-1 t1个shares都不能重构出秘密 s s s

第三次尝试:处理Dropped用户

为了克服在通信轮次之间,新dropped用户增加recovery阶段,用户Shamir秘密分享的阈值。每个用户发送他们DH秘钥的shares给其他用户,只要符合阈值条件,允许pairwise secrets被recovered,即使是recovery期间新dropped用户。协议可以总结如下:

  1. 每个用户 u u u将他的DH秘钥 a u a_u au分享成n-1个部分 a u 1 , a u 2 , . . , a u ( n − 1 ) a_{u1},a_{u2},..,a_{u(n-1)} au1,au2,..,au(n1),并发送给其他 n − 1 n-1 n1个用户。
  2. server接收来自在线用户的 y u y_u yu(记为: U o n l i n e , r o u n d 1 U_{online,round 1} Uonline,round1)。
  3. server计算dropped用户集,表示为 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1
  4. server向 U o n l i n e , r o u n d 1 U_{online,round 1} Uonline,round1询问 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1的shares。在第二轮通信中假设至少还有t个用户在线
  5. server对 U d r o p p e d , r o u n d 1 U_{dropped,round 1} Udropped,round1的秘钥进行recover,并在最后聚合时,remove掉他们。

该方法依然没有解决恶意server因为通信延迟问题获取用户的数据问题。

最后一次尝试:双重掩码

双重掩码的目标就是为了防止用户数据的泄露,即使当server重构出用户的masks。首先,每个用户产生一个额外的随机秘钥 a u a_u au,并且分布他的shares给其他的用户。生成 y u y_u yu时,添加第二重mask:
y u = x u + a u + ∑ u < v s u , v − ∑ u > v s v , u m o d e R y_u = x_u+a_u+\sum_{u<v}s_{u,v}-\sum_{u>v}s_{v,u}\quad mode \quad R yu=xu+au+u<vsu,vu>vsv,umodeR
在recovery轮次中,对于每个用户,server必须作出精确的选择。从每个在线的成员 v v v中,请求 u u u s u , v s_{u,v} su,v或者 a u a_u au。对于同一个用户,一个诚实的 v v v通过这两种shares不能还原数据,server需要从所有dropped的用户中聚合至少t个 s u , v s_{u,v} su,v的shares或者所有在线用户中t个 a u a_u au的shares。之后,server便可以减去剩余的masks还原数据。
该方法整个过程中的计算和通信数量级还是 n 2 n_2 n2,n表示参与计算的用户数。一个新的问题:当 t < n 2 t<\frac{n}{2} t<2n时,server可以分别询问用户的 s u , v s_{u,v} su,v a u a_u au,来解密用户的数据

参考文献:
[1] K. Bonawitz. ”Practical Secure Aggregation for Privacy-Preserving Machine Learning”. 2017.
[2] J. Konecny. ”Federated Learning: Strategies for Improving Communication Efficiency”. 2017.
[3] H. B. McMahan. ”Communication-Efficient Learning of Deep Networks from Decentralized Data”. 2016.
[4] A. Shamir. ”How to Share a Secret”. 1979.

相关文章:

《Secure Analytics-Federated Learning and Secure Aggregation》论文阅读

背景 机器学习模型对数据的分析具有很大的优势&#xff0c;很多敏感数据分布在用户各自的终端。若大规模收集用户的敏感数据具有泄露的风险。 对于安全分析的一般背景就是认为有n方有敏感数据&#xff0c;并且不愿意分享他们的数据&#xff0c;但可以分享聚合计算后的结果。 联…...

十三、Django之添加用户(原始方法实现)

修改urls.py path("user/add/", views.user_add),添加user_add.html {% extends layout.html %} {% block content %}<div class"container"><div class"panel panel-default"><div class"panel-heading"><h3 c…...

Elasticsearch数据操作原理

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎&#xff0c;设计用于云计算环境中&#xff0c;能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性&#xff0c;可以在短时间内搜索和分析大量数据。 Elasticsearch 不仅仅是一个…...

gitgitHub

在git中复制CtrlInsert、粘贴CtrlShif 一、用户名和邮箱的配置 查看用户名 &#xff1a;git config user.name 查看密码&#xff1a; git config user.password 查看邮箱&#xff1a;git config user.email 查看配置信息&#xff1a; $ git config --list 修改用户名 git co…...

十天学完基础数据结构-第九天(堆(Heap))

堆的基本概念 堆是一种特殊的树形数据结构&#xff0c;通常用于实现优先级队列。堆具有以下两个主要特点&#xff1a; 父节点的值始终大于或等于其子节点的值&#xff08;最大堆&#xff09;&#xff0c;或者父节点的值始终小于或等于其子节点的值&#xff08;最小堆&#xff…...

vertx的学习总结7之用kotlin 与vertx搞一个简单的http

这里我就简单的聊几句&#xff0c;如何用vertx web来搞一个web项目的 1、首先先引入几个依赖&#xff0c;这里我就用maven了&#xff0c;这个是kotlinvertx web <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apac…...

golang学习笔记(二):链路追踪

自定义http连接的服务端 package serverimport ("github.com/gin-gonic/gin""go.opentelemetry.io/contrib/instrumentation/github.com/gin-gonic/gin/otelgin""net/http" )type MyServer struct {Server *http.Server }func GetServer() *MyS…...

git提交代码实际操作

1.仓库的代码 2.克隆代码下存在的分支 git clobe https://gitee.com/sadsadasad/big-event-11.git 3.查看当下存在的分支 git branch -a 在很多情况下,我们是要围绕着dev分支进行开发,所以我们可以在开发之前问明白围绕那个分支进行开发。 4.直接拉去dev分支代码 5.如果没在…...

TF坐标变换

ROS小乌龟跟随 5.1 TF坐标变换 Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 tf模块&#xff1a;在 ROS 中用于实现不同坐标系之间的点或向量的转换。 在ROS中坐标变换最初对应的是tf&#xff0c;不过在 hydro 版本开始, tf 被弃用&#xff0c;迁移到 tf2,后者更…...

如何进行网络编程和套接字操作?

网络编程是计算机编程中重要的领域之一&#xff0c;它使程序能够在网络上进行数据传输和通信。C语言是一种强大的编程语言&#xff0c;也可以用于网络编程。网络编程通常涉及套接字&#xff08;Socket&#xff09;操作&#xff0c;套接字是一种用于网络通信的抽象接口。本文将详…...

在Spark中集成和使用Hudi

本文介绍了在Spark中集成和使用Hudi的功能。使用Spark数据源API(scala和python)和Spark SQL,插入、更新、删除和查询Hudi表的代码片段。 1.安装 Hudi适用于Spark-2.4.3+和Spark 3.x版本。 1.1 Spark 3支持矩阵 Hudi...

力扣第226翻转二叉数 c++三种方法 +注释

题目 226. 翻转二叉树 简单 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1]示例 2&#xff1a; 输入&#xff1a;root [2,1,3] 输出&am…...

React项目部署 - Nginx配置

写在前面&#xff1a;博主是一只经过实战开发历练后投身培训事业的“小山猪”&#xff0c;昵称取自动画片《狮子王》中的“彭彭”&#xff0c;总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域&#xff0c;如今终有小成…...

【Vue3】定义全局变量和全局函数

// main.ts import { createApp } from vue import App from ./App.vue const app createApp(App)// 解决 ts 报错 type Filter {format<T>(str: T): string } declare module vue {export interface ComponentCustomProperties {$filters: Filter,$myArgs: string} }a…...

【Pandas】Apply自定义行数

文章目录 1. Series的apply方法2. DataFrame的apply方法2.1 针对列使用apply2.2 针对行使用apply Pandas提供了很多数据处理的API,但当提供的API不能满足需求的时候,需要自己编写数据处理函数, 这个时候可以使用apply函数apply函数可以接收一个自定义函数, 可以将DataFrame的行…...

C#,数值计算——完全VEGAS编码的蒙特·卡洛计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Complete VEGAS Code /// adaptive/recursive Monte Carlo /// </summary> public abstract class VEGAS { const int NDMX 50; const int …...

纯css实现3D鼠标跟随倾斜

老规矩先上图 为什么今天会想起来整这个呢?这是因为和我朋友吵架, 就是关于这个效果的,就是这个 卡片懸停毛玻璃效果, 我朋友认为纯css也能写, 我则坦言他就是在放狗屁,这种跟随鼠标的3D效果要怎么可能能用纯css写, 然后吵着吵着发现,欸,好像真能用css写哦,我以前还写过这种…...

Pandas数据结构

文章目录 1. Series数据结构1.1 Series数据类型创建1.2 Series的常用属性valuesindex/keys()shapeTloc/iloc 1.3 Series的常用方法mean()max()/min()var()/std()value_counts()describe() 1.4 Series运算加/减法乘法 2. DataFrame数据结构2.1 DataFrame数据类型创建2.2 布尔索引…...

systemverilog function的一点小case

关于function的应用无论是在systemverilog还是verilog中都有很广泛的应用&#xff0c;但是一直有一个模糊的概念困扰着我&#xff0c;今天刚好有时间来搞清楚并记录下来。 关于fucntion的返回值的问题&#xff1a; function integer clog2( input logic[255:0] value);for(cl…...

微服务的初步使用

环境说明 jdk1.8 maven3.6.3 mysql8 idea2022 spring cloud2022.0.8 微服务案例的搭建 新建父工程 打开IDEA&#xff0c;File->New ->Project&#xff0c;填写Name&#xff08;工程名称&#xff09;和Location&#xff08;工程存储位置&#xff09;&#xff0c;选…...

【2023年11月第四版教材】第18章《项目绩效域》(合集篇)

第18章《项目绩效域》&#xff08;合集篇&#xff09; 1 章节内容2 干系人绩效域2.1 绩效要点2.2 执行效果检查2.3 与其他绩效域的相互作用 3 团队绩效域3.1 绩效要点3.2 与其他绩效域的相互作用3.3 执行效果检查3.4 开发方法和生命周期绩效域 4 绩效要点4.1 与其他绩效域的相互…...

Android 11.0 mt6771新增分区功能实现三

1.前言 在11.0的系统开发中,在对某些特殊模块中关于数据的存储方面等需要新增分区来保存, 所以就需要在系统分区新增分区,接下来就来实现这个功能,看系列三的实现过程 2.mt6771新增分区功能实现三的核心类 build/make/tools/releasetools/common.py device/mediatek/mt6…...

计算机网络——计算机网络的性能指标(上)-速率、带宽、吞吐量、时延

目录 速率 比特 速率 例1 带宽 带宽在模拟信号系统中的意义 带宽在计算机网络中的意义 吞吐量 时延 发送时延 传播时延 处理时延 例2 例3 速率 了解速率之前&#xff0c;先详细了解一下比特&#xff1a; 比特 计算机中数据量的单位&#xff0c;也是信息论中信…...

每日一题 518零钱兑换2(完全背包)

题目 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带符号整…...

Linux shell编程学习笔记8:使用字符串

一、前言 字符串是大多数编程语言中最常用最有用的数据类型&#xff0c;这在Linux shell编程中也不例外。 本文讨论了Linux Shell编程中的字符串的三种定义方式的差别&#xff0c;以及字符串拼接、取字符串长度、提取字符串、查找子字符串等常用字符串操作,&#xff0c;以及反…...

【Spring笔记03】Spring依赖注入各种数据类型

这篇文章&#xff0c;详细介绍一下Spring框架中如何注入各种数据类型&#xff0c;包含&#xff1a;注入基本数据类型、数组、集合、Map映射、Property属性、注入空字符串、注入null值、注入特殊字符等内容&#xff0c;以及如何使用命名空间进行依赖注入。 目录 一、注入各种数据…...

2023计算机保研——双非上岸酒吧舞

我大概是从22年10月份开始写博客的&#xff0c;当时因为本校专业的培养方案的原因&#xff0c;课程很多&#xff0c;有些知识纸质记录很不方便&#xff0c;于是选择了打破了自己的成见使用博客来记录学习生活。对于我个人而言&#xff0c;保研生活在前一大半过程中都比较艰难&a…...

《计算机视觉中的多视图几何》笔记(13)

13 Scene planes and homographies 本章主要讲述两个摄像机和一个世界平面之间的射影几何关系。 我们假设空间有一平面 π \pi π&#xff0c;平面上的一点为 x π x_{\pi} xπ​。 x π x_{\pi} xπ​分别在两幅图像 P , P ′ P, P P,P′上形成了 x , x ′ x, x x,x′。 那…...

H5移动端购物商城系统源码 小型商城全新简洁风格全新UI 支持易支付接口

一款比较简单的 H5 移动端购物商城系统源码&#xff0c;比较适合单品商城、小型商城使用。带有易支付接口。 源码下载&#xff1a;https://download.csdn.net/download/m0_66047725/88391704 源码下载2&#xff1a;评论留言或私信留言...

全志ARM926 Melis2.0系统的开发指引⑤

全志ARM926 Melis2.0系统的开发指引⑤ 编写目的8. 固件修改工具(ImageModify)使用8.1.界面说明8.2.操作步骤8.2.1. 配置平台8.2.2. 选择固件8.2.3. 选择要替换的文件8.2.4. 替换文件8.2.5. 保存固件 8.3.注意事项8.4.增加固件修改权限设置8.4.1. 概述8.4.2. 操作说明8.4.2.1.打…...

惠东做网站/网络推广公司可不可靠

sql&#xff1a;SELECT * FROM table WHERE name like ‘%关键字1%‘ OR name like ‘%关键字2%‘ OR name like ‘%关键字3%‘where在Thinkphp 对应的写法是怎样的&#xff1f;手册&#xff1a;表达式 含义EQ 等于()NEQ 不等于(<>)GT 大于(>)EGT 大于…...

重庆做网站 外包公司有哪些/爱站网爱情电影网

有些时候我们需要动态的给某个UI元素加载内容或数据。 demo6.go代码如下&#xff1a; package main;import ("github.com/sciter-sdk/go-sciter/window""github.com/sciter-sdk/go-sciter""log""fmt" )func load(root *sciter.Element…...

市住房城乡建设委官方网站九江/建网站费用

awk 简介基本语法变量进阶简介 awk是一门编程语言&#xff0c;报告生成器&#xff0c;格式化文本输出 awk命名来自Aho, Weinberger, Kernighan三位大佬名字首字母缩写 awk多版本版本: awk、nawk、gawk&#xff0c;未作特别说明&#xff0c;一般指gawk&#xff0c;gawk是AWK的GN…...

php购物网站开发/百度手游app下载

本节书摘来自异步社区《请君入瓮——APT攻防指南之兵不厌诈》一书中的第1章1.4节APT和PT案例&#xff0c;作者【美】Sean Bodmer , Max Kilger , Gregory Carpenter , Jade Jones,更多章节内容可以访问云栖社区“异步社区”公众号查看。 1.4 APT和PT案例请君入瓮——APT攻防指南…...

做二手房的网站技巧/2022最新引流推广平台

在mysql中&#xff0c;如果是UTF8编码&#xff0c;那么varchar(20)的意思是20个汉字或者字母以内。 refurl:http://cau99.blog.51cto.com/1855224/383023/...

疫情中高风险地区/seo网络推广招聘

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2020年A特种设备相关管理&#xff08;电梯&#xff09;考试及A特种设备相关管理&#xff08;电梯&#xff09;考试题&#xff0c;包含A特种设备相关管理&#xff08;电梯&#xff09;考试答案和解析及A特种设备相关管…...