当前位置: 首页 > news >正文

JUC第十五讲:JUC集合-ConcurrentHashMap详解(面试的重点)

JUC第十五讲:JUC集合-ConcurrentHashMap详解

本文是JUC第十五讲:JUC集合-ConcurrentHashMap详解。JDK1.7之前的ConcurrentHashMap使用分段锁机制实现,JDK1.8则使用数组+链表+红黑树数据结构和CAS原子操作实现ConcurrentHashMap;本文将分别介绍这两种方式的实现方案及其区别。

文章目录

  • JUC第十五讲:JUC集合-ConcurrentHashMap详解
    • 1、带着BAT大厂的面试问题去理解
    • 2、为什么HashTable慢
    • 3、ConcurrentHashMap - JDK 1.7
      • 3.1、数据结构
      • 3.2、初始化
      • 3.3、put 过程分析
      • 3.4、初始化槽: ensureSegment
      • 3.5、获取写入锁: scanAndLockForPut
      • 3.6、扩容: rehash
      • 3.7、get 过程分析
      • 3.8、并发问题分析
    • 4、ConcurrentHashMap - JDK 1.8
      • 4.1、数据结构
      • 4.2、初始化
      • 4.3、put 过程分析
      • 4.4、初始化数组: initTable
      • 4.5、链表转红黑树: treeifyBin
      • 4.6、扩容: tryPresize
      • 4.7、数据迁移: transfer
      • 4.8、get 过程分析
    • 5、对比总结
    • 6、ConcurrentHashMap使用案例
    • Action1:讲讲为什么ConcurrentHashMap是并发安全的吧,既然有锁怎么去统计size呢?
    • Action2:ConcurrentHashMap为啥线程安全呢?(10分)
    • 参考文章

1、带着BAT大厂的面试问题去理解

请带着这些问题继续后文,会很大程度上帮助你更好的理解相关知识点。

  • 为什么HashTable慢? 它的并发度是什么? 那么ConcurrentHashMap并发度是什么? 并发度是segment的数量
  • ConcurrentHashMap在JDK1.7和JDK1.8中实现有什么差别? JDK1.8解決了JDK1.7中什么问题 1.7是segment 1.8是数组+链表+红黑树
  • ConcurrentHashMap JDK1.7实现的原理是什么? 分段锁机制
  • ConcurrentHashMap JDK1.8实现的原理是什么? 数组+链表+红黑树,CAS
  • ConcurrentHashMap JDK1.7中Segment数(concurrencyLevel)默认值是多少? 为何一旦初始化就不可再扩容? 默认为16
  • ConcurrentHashMap JDK1.7说说其put的机制?
  • ConcurrentHashMap JDK1.7是如何扩容的? rehash(注:segment 数组不能扩容,扩容是 segment 数组某个位置内部的数组 HashEntry<K,V>[] 进行扩容)
  • ConcurrentHashMap JDK1.8是如何扩容的? tryPresize
  • ConcurrentHashMap JDK1.8链表转红黑树的时机是什么? 临界值为什么是8? 链表的长度大于8
  • ConcurrentHashMap JDK1.8是如何进行数据迁移的? transfer

2、为什么HashTable慢

Hashtable之所以效率低下主要是因为其实现使用了synchronized关键字对put等操作进行加锁,而synchronized关键字加锁是对整个对象进行加锁,也就是说在进行put等修改Hash表的操作时,锁住了整个Hash表,从而使得其表现的效率低下。

3、ConcurrentHashMap - JDK 1.7

在JDK1.5~1.7版本,Java使用了分段锁机制实现ConcurrentHashMap.

简而言之,ConcurrentHashMap在对象中保存了一个Segment数组,即将整个Hash表划分为多个分段;而每个Segment元素,即每个分段则类似于一个Hashtable;这样,在执行put操作时首先根据hash算法定位到元素属于哪个Segment,然后对该Segment加锁即可。因此,ConcurrentHashMap在多线程并发编程中可是实现多线程put操作。接下来分析JDK1.7版本中ConcurrentHashMap的实现原理。

3.1、数据结构

整个 ConcurrentHashMap 由一个个 Segment 组成,Segment 代表”部分“或”一段“的意思,所以很多地方都会将其描述为分段锁。注意,行文中,我很多地方用了“槽”来代表一个 segment。

简单理解就是,ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承 ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。

img

concurrencyLevel: 并行级别、并发数、Segment 数,怎么翻译不重要,理解它。默认是 16,也就是说 ConcurrentHashMap 有 16 个 Segments,所以理论上,这个时候,最多可以同时支持 16 个线程并发写,只要它们的操作分别分布在不同的 Segment 上。这个值可以在初始化的时候设置为其他值,但是一旦初始化以后,它是不可以扩容的。

再具体到每个 Segment 内部,其实每个 Segment 很像之前介绍的 HashMap,不过它要保证线程安全,所以处理起来要麻烦些。

3.2、初始化

  • initialCapacity: 初始容量,这个值指的是整个 ConcurrentHashMap 的初始容量,实际操作的时候需要平均分给每个 Segment。
  • loadFactor: 负载因子,之前我们说了,Segment 数组不可以扩容,所以这个负载因子是给每个 Segment 内部使用的。
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (concurrencyLevel > MAX_SEGMENTS)concurrencyLevel = MAX_SEGMENTS;// Find power-of-two sizes best matching argumentsint sshift = 0;int ssize = 1;// 计算并行级别 ssize,因为要保持并行级别是 2 的 n 次方while (ssize < concurrencyLevel) {++sshift;ssize <<= 1;}// 我们这里先不要那么烧脑,用默认值,concurrencyLevel 为 16,sshift 为 4// 那么计算出 segmentShift 为 28,segmentMask 为 15,后面会用到这两个值this.segmentShift = 32 - sshift;this.segmentMask = ssize - 1;if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;// initialCapacity 是设置整个 map 初始的大小,// 这里根据 initialCapacity 计算 Segment 数组中每个位置可以分到的大小// 如 initialCapacity 为 64,那么每个 Segment 或称之为"槽"可以分到 4 个int c = initialCapacity / ssize;if (c * ssize < initialCapacity)++c;// 默认 MIN_SEGMENT_TABLE_CAPACITY 是 2,这个值也是有讲究的,因为这样的话,对于具体的槽上,// 插入一个元素不至于扩容,插入第二个的时候才会扩容int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c)cap <<= 1;// 创建 Segment 数组,// 并创建数组的第一个元素 segment[0]Segment<K,V> s0 =new Segment<K,V>(loadFactor, (int)(cap * loadFactor),(HashEntry<K,V>[])new HashEntry[cap]);Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];// 往数组写入 segment[0]UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]this.segments = ss;
}

初始化完成,我们得到了一个 Segment 数组。

我们就当是用 new ConcurrentHashMap() 无参构造函数进行初始化的,那么初始化完成后:

  • Segment 数组长度为 16,不可以扩容
  • Segment[i] 的默认大小为 2,负载因子是 0.75,得出初始阈值为 1.5,也就是以后插入第一个元素不会触发扩容,插入第二个会进行第一次扩容
  • 这里初始化了 segment[0],其他位置还是 null,至于为什么要初始化 segment[0],后面的代码会介绍
  • 当前 segmentShift 的值为 32 - 4 = 28,segmentMask 为 16 - 1 = 15,姑且把它们简单翻译为移位数和掩码,这两个值马上就会用到

3.3、put 过程分析

我们先看 put 的主流程,对于其中的一些关键细节操作,后面会进行详细介绍。

public V put(K key, V value) {Segment<K,V> s;if (value == null)throw new NullPointerException();// 1. 计算 key 的 hash 值int hash = hash(key);// 2. 根据 hash 值找到 Segment 数组中的位置 j//    hash 是 32 位,无符号右移 segmentShift(28) 位,剩下高 4 位,//    然后和 segmentMask(15) 做一次与操作,也就是说 j 是 hash 值的高 4 位,也就是槽的数组下标int j = (hash >>> segmentShift) & segmentMask;// 刚刚说了,初始化的时候初始化了 segment[0],但是其他位置还是 null,// ensureSegment(j) 对 segment[j] 进行初始化if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck(segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegments = ensureSegment(j);// 3. 插入新值到 槽 s 中return s.put(key, hash, value, false);
}

第一层皮很简单,根据 hash 值很快就能找到相应的 Segment,之后就是 Segment 内部的 put 操作了。

Segment 内部是由 数组+链表 组成的。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {// 在往该 segment 写入前,需要先获取该 segment 的独占锁//    先看主流程,后面还会具体介绍这部分内容HashEntry<K,V> node = tryLock() ? null :scanAndLockForPut(key, hash, value);V oldValue;try {// 这个是 segment 内部的数组HashEntry<K,V>[] tab = table;// 再利用 hash 值,求应该放置的数组下标int index = (tab.length - 1) & hash;// first 是数组该位置处的链表的表头HashEntry<K,V> first = entryAt(tab, index);// 下面这串 for 循环虽然很长,不过也很好理解,想想该位置没有任何元素和已经存在一个链表这两种情况for (HashEntry<K,V> e = first;;) {if (e != null) {K k;if ((k = e.key) == key ||(e.hash == hash && key.equals(k))) {oldValue = e.value;if (!onlyIfAbsent) {// 覆盖旧值e.value = value;++modCount;}break;}// 继续顺着链表走e = e.next;}else {// node 到底是不是 null,这个要看获取锁的过程,不过和这里都没有关系。// 如果不为 null,那就直接将它设置为链表表头;如果是null,初始化并设置为链表表头。if (node != null)node.setNext(first);elsenode = new HashEntry<K,V>(hash, key, value, first);int c = count + 1;// 如果超过了该 segment 的阈值,这个 segment 需要扩容if (c > threshold && tab.length < MAXIMUM_CAPACITY)rehash(node); // 扩容后面也会具体分析else// 没有达到阈值,将 node 放到数组 tab 的 index 位置,// 其实就是将新的节点设置成原链表的表头setEntryAt(tab, index, node);++modCount;count = c;oldValue = null;break;}}} finally {// 解锁unlock();}return oldValue;
}

整体流程还是比较简单的,由于有独占锁的保护,所以 segment 内部的操作并不复杂。至于这里面的并发问题,我们稍后再进行介绍。

到这里 put 操作就结束了,接下来,我们说一说其中几步关键的操作。

3.4、初始化槽: ensureSegment

ConcurrentHashMap 初始化的时候会初始化第一个槽 segment[0],对于其他槽来说,在插入第一个值的时候进行初始化。

这里需要考虑并发,因为很可能会有多个线程同时进来初始化同一个槽 segment[k],不过只要有一个成功了就可以。

private Segment<K,V> ensureSegment(int k) {final Segment<K,V>[] ss = this.segments;long u = (k << SSHIFT) + SBASE; // raw offsetSegment<K,V> seg;if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {// 这里看到为什么之前要初始化 segment[0] 了,// 使用当前 segment[0] 处的数组长度和负载因子来初始化 segment[k]// 为什么要用“当前”,因为 segment[0] 可能早就扩容过了Segment<K,V> proto = ss[0];int cap = proto.table.length;float lf = proto.loadFactor;int threshold = (int)(cap * lf);// 初始化 segment[k] 内部的数组HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))== null) { // 再次检查一遍该槽是否被其他线程初始化了。Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);// 使用 while 循环,内部用 CAS,当前线程成功设值或其他线程成功设值后,退出while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))== null) {if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))break;}}}return seg;
}

总的来说,ensureSegment(int k) 比较简单,对于并发操作使用 CAS 进行控制。

3.5、获取写入锁: scanAndLockForPut

前面我们看到,在往某个 segment 中 put 的时候,首先会调用 node = tryLock() ? null : scanAndLockForPut(key, hash, value),也就是说先进行一次 tryLock() 快速获取该 segment 的独占锁,如果失败,那么进入到 scanAndLockForPut 这个方法来获取锁。

下面我们来具体分析这个方法中是怎么控制加锁的。

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {HashEntry<K,V> first = entryForHash(this, hash);HashEntry<K,V> e = first;HashEntry<K,V> node = null;int retries = -1; // negative while locating node// 循环获取锁while (!tryLock()) {HashEntry<K,V> f; // to recheck first belowif (retries < 0) {if (e == null) {if (node == null) // speculatively create node// 进到这里说明数组该位置的链表是空的,没有任何元素// 当然,进到这里的另一个原因是 tryLock() 失败,所以该槽存在并发,不一定是该位置node = new HashEntry<K,V>(hash, key, value, null);retries = 0;}else if (key.equals(e.key))retries = 0;else// 顺着链表往下走e = e.next;}// 重试次数如果超过 MAX_SCAN_RETRIES(单核1多核64),那么不抢了,进入到阻塞队列等待锁//    lock() 是阻塞方法,直到获取锁后返回else if (++retries > MAX_SCAN_RETRIES) {lock();break;}else if ((retries & 1) == 0 &&// 这个时候是有大问题了,那就是有新的元素进到了链表,成为了新的表头//     所以这边的策略是,相当于重新走一遍这个 scanAndLockForPut 方法(f = entryForHash(this, hash)) != first) {e = first = f; // re-traverse if entry changedretries = -1;}}return node;
}

这个方法有两个出口,一个是 tryLock() 成功了,循环终止,另一个就是重试次数超过了 MAX_SCAN_RETRIES,进到 lock() 方法,此方法会阻塞等待,直到成功拿到独占锁。

这个方法就是看似复杂,但是其实就是做了一件事,那就是获取该 segment 的独占锁,如果需要的话顺便实例化了一下 node。

3.6、扩容: rehash

重复一下,segment 数组不能扩容,扩容是 segment 数组某个位置内部的数组 HashEntry<K,V>[] 进行扩容,扩容后,容量为原来的 2 倍。

首先,我们要回顾一下触发扩容的地方,put 的时候,如果判断该值的插入会导致该 segment 的元素个数超过阈值,那么先进行扩容,再插值,读者这个时候可以回去 put 方法看一眼。

该方法不需要考虑并发,因为到这里的时候,是持有该 segment 的独占锁的。

// 方法参数上的 node 是这次扩容后,需要添加到新的数组中的数据。
private void rehash(HashEntry<K,V> node) {HashEntry<K,V>[] oldTable = table;int oldCapacity = oldTable.length;// 2 倍int newCapacity = oldCapacity << 1;threshold = (int)(newCapacity * loadFactor);// 创建新数组HashEntry<K,V>[] newTable =(HashEntry<K,V>[]) new HashEntry[newCapacity];// 新的掩码,如从 16 扩容到 32,那么 sizeMask 为 31,对应二进制 ‘000...00011111’int sizeMask = newCapacity - 1;// 遍历原数组,老套路,将原数组位置 i 处的链表拆分到 新数组位置 i 和 i+oldCap 两个位置for (int i = 0; i < oldCapacity ; i++) {// e 是链表的第一个元素HashEntry<K,V> e = oldTable[i];if (e != null) {HashEntry<K,V> next = e.next;// 计算应该放置在新数组中的位置,// 假设原数组长度为 16,e 在 oldTable[3] 处,那么 idx 只可能是 3 或者是 3 + 16 = 19int idx = e.hash & sizeMask;if (next == null)   // 该位置处只有一个元素,那比较好办newTable[idx] = e;else { // Reuse consecutive sequence at same slot// e 是链表表头HashEntry<K,V> lastRun = e;// idx 是当前链表的头节点 e 的新位置int lastIdx = idx;// 下面这个 for 循环会找到一个 lastRun 节点,这个节点之后的所有元素是将要放到一起的for (HashEntry<K,V> last = next;last != null;last = last.next) {int k = last.hash & sizeMask;if (k != lastIdx) {lastIdx = k;lastRun = last;}}// 将 lastRun 及其之后的所有节点组成的这个链表放到 lastIdx 这个位置newTable[lastIdx] = lastRun;// 下面的操作是处理 lastRun 之前的节点,//    这些节点可能分配在另一个链表中,也可能分配到上面的那个链表中for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {V v = p.value;int h = p.hash;int k = h & sizeMask;HashEntry<K,V> n = newTable[k];newTable[k] = new HashEntry<K,V>(h, p.key, v, n);}}}}// 将新来的 node 放到新数组中刚刚的 两个链表之一 的 头部int nodeIndex = node.hash & sizeMask; // add the new nodenode.setNext(newTable[nodeIndex]);newTable[nodeIndex] = node;table = newTable;
}

这里的扩容比之前的 HashMap 要复杂一些,代码难懂一点。上面有两个挨着的 for 循环,第一个 for 有什么用呢?

仔细一看发现,如果没有第一个 for 循环,也是可以工作的,但是,这个 for 循环下来,如果 lastRun 的后面还有比较多的节点,那么这次就是值得的。因为我们只需要克隆 lastRun 前面的节点,后面的一串节点跟着 lastRun 走就是了,不需要做任何操作。

我觉得 Doug Lea 的这个想法也是挺有意思的,不过比较坏的情况就是每次 lastRun 都是链表的最后一个元素或者很靠后的元素,那么这次遍历就有点浪费了。不过 Doug Lea 也说了,根据统计,如果使用默认的阈值,大约只有 1/6 的节点需要克隆。

3.7、get 过程分析

相对于 put 来说,get 就很简单了。

  • 计算 hash 值,找到 segment 数组中的具体位置,或我们前面用的“槽”
  • 槽中也是一个数组,根据 hash 找到数组中具体的位置
  • 到这里是链表了,顺着链表进行查找即可
public V get(Object key) {Segment<K,V> s; // manually integrate access methods to reduce overheadHashEntry<K,V>[] tab;// 1. hash 值int h = hash(key);long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;// 2. 根据 hash 找到对应的 segmentif ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&(tab = s.table) != null) {// 3. 找到segment 内部数组相应位置的链表,遍历for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);e != null; e = e.next) {K k;if ((k = e.key) == key || (e.hash == h && key.equals(k)))return e.value;}}return null;
}

3.8、并发问题分析

现在我们已经说完了 put 过程和 get 过程,我们可以看到 get 过程中是没有加锁的,那自然我们就需要去考虑并发问题。

添加节点的操作 put 和删除节点的操作 remove 都是要加 segment 上的独占锁的,所以它们之间自然不会有问题,我们需要考虑的问题就是 get 的时候在同一个 segment 中发生了 put 或 remove 操作。

  • put 操作的线程安全性。
    • 初始化槽,这个我们之前就说过了,使用了 CAS 来初始化 Segment 中的数组。
    • 添加节点到链表的操作是插入到表头的,所以,如果这个时候 get 操作在链表遍历的过程已经到了中间,是不会影响的。当然,另一个并发问题就是 get 操作在 put 之后,需要保证刚刚插入表头的节点被读取,这个依赖于 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。
    • 扩容。扩容是新创建了数组,然后进行迁移数据,最后面将 newTable 设置给属性 table。所以,如果 get 操作此时也在进行,那么也没关系,如果 get 先行,那么就是在旧的 table 上做查询操作;而 put 先行,那么 put 操作的可见性保证就是 table 使用了 volatile 关键字。
  • remove 操作的线程安全性。
    • remove 操作我们没有分析源码,所以这里说的读者感兴趣的话还是需要到源码中去求实一下的。
    • get 操作需要遍历链表,但是 remove 操作会"破坏"链表。
    • 如果 remove 破坏的节点 get 操作已经过去了,那么这里不存在任何问题。
    • 如果 remove 先破坏了一个节点,分两种情况考虑。 1、如果此节点是头节点,那么需要将头节点的 next 设置为数组该位置的元素,table 虽然使用了 volatile 修饰,但是 volatile 并不能提供数组内部操作的可见性保证,所以源码中使用了 UNSAFE 来操作数组,请看方法 setEntryAt。2、如果要删除的节点不是头节点,它会将要删除节点的后继节点接到前驱节点中,这里的并发保证就是 next 属性是 volatile 的。

4、ConcurrentHashMap - JDK 1.8

在JDK1.7之前,ConcurrentHashMap是通过分段锁机制来实现的,所以其最大并发度受Segment的个数限制。因此,在JDK1.8中,ConcurrentHashMap的实现原理摒弃了这种设计,而是选择了与HashMap类似的数组+链表+红黑树的方式实现,而加锁则采用CAS和synchronized实现

4.1、数据结构

img

结构上和 Java8 的 HashMap 基本上一样,不过它要保证线程安全性,所以在源码上确实要复杂一些。

4.2、初始化

// 这构造函数里,什么都不干
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {if (initialCapacity < 0)throw new IllegalArgumentException();int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?MAXIMUM_CAPACITY :tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));this.sizeCtl = cap;
}

这个初始化方法有点意思,通过提供初始容量,计算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然后向上取最近的 2 的 n 次方】。如 initialCapacity 为 10,那么得到 sizeCtl 为 16,如果 initialCapacity 为 11,得到 sizeCtl 为 32。

sizeCtl 这个属性使用的场景很多,不过只要跟着文章的思路来,就不会被它搞晕了。

4.3、put 过程分析

仔细地一行一行代码看下去:

public V put(K key, V value) {return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();// 得到 hash 值int hash = spread(key.hashCode());// 用于记录相应链表的长度int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh;// 如果数组"空",进行数组初始化if (tab == null || (n = tab.length) == 0)// 初始化数组,后面会详细介绍tab = initTable();// 找该 hash 值对应的数组下标,得到第一个节点 felse if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {// 如果数组该位置为空,//    用一次 CAS 操作将这个新值放入其中即可,这个 put 操作差不多就结束了,可以拉到最后面了//          如果 CAS 失败,那就是有并发操作,进到下一个循环就好了if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))break;                   // no lock when adding to empty bin}// hash 居然可以等于 MOVED,这个需要到后面才能看明白,不过从名字上也能猜到,肯定是因为在扩容else if ((fh = f.hash) == MOVED)// 帮助数据迁移,这个等到看完数据迁移部分的介绍后,再理解这个就很简单了tab = helpTransfer(tab, f);else { // 到这里就是说,f 是该位置的头节点,而且不为空V oldVal = null;// 获取数组该位置的头节点的监视器锁synchronized (f) {if (tabAt(tab, i) == f) {if (fh >= 0) { // 头节点的 hash 值大于 0,说明是链表// 用于累加,记录链表的长度binCount = 1;// 遍历链表for (Node<K,V> e = f;; ++binCount) {K ek;// 如果发现了"相等"的 key,判断是否要进行值覆盖,然后也就可以 break 了if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}// 到了链表的最末端,将这个新值放到链表的最后面Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key,value, null);break;}}}else if (f instanceof TreeBin) { // 红黑树Node<K,V> p;binCount = 2;// 调用红黑树的插值方法插入新节点if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}}if (binCount != 0) {// 判断是否要将链表转换为红黑树,临界值和 HashMap 一样,也是 8if (binCount >= TREEIFY_THRESHOLD)// 这个方法和 HashMap 中稍微有一点点不同,那就是它不是一定会进行红黑树转换,// 如果当前数组的长度小于 64,那么会选择进行数组扩容,而不是转换为红黑树//    具体源码我们就不看了,扩容部分后面说treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}// addCount(1L, binCount);return null;
}

4.4、初始化数组: initTable

这个比较简单,主要就是初始化一个合适大小的数组,然后会设置 sizeCtl。

初始化方法中的并发问题是通过对 sizeCtl 进行一个 CAS 操作来控制的。

private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;while ((tab = table) == null || tab.length == 0) {// 初始化的"功劳"被其他线程"抢去"了if ((sc = sizeCtl) < 0)Thread.yield(); // lost initialization race; just spin// CAS 一下,将 sizeCtl 设置为 -1,代表抢到了锁else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {try {if ((tab = table) == null || tab.length == 0) {// DEFAULT_CAPACITY 默认初始容量是 16int n = (sc > 0) ? sc : DEFAULT_CAPACITY;// 初始化数组,长度为 16 或初始化时提供的长度Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];// 将这个数组赋值给 table,table 是 volatile 的table = tab = nt;// 如果 n 为 16 的话,那么这里 sc = 12// 其实就是 0.75 * nsc = n - (n >>> 2);}} finally {// 设置 sizeCtl 为 sc,我们就当是 12 吧sizeCtl = sc;}break;}}return tab;
}

4.5、链表转红黑树: treeifyBin

前面我们在 put 源码分析也说过,treeifyBin 不一定就会进行红黑树转换,也可能是仅仅做数组扩容。我们还是进行源码分析吧。

private final void treeifyBin(Node<K,V>[] tab, int index) {Node<K,V> b; int n, sc;if (tab != null) {// MIN_TREEIFY_CAPACITY 为 64// 所以,如果数组长度小于 64 的时候,其实也就是 32 或者 16 或者更小的时候,会进行数组扩容if ((n = tab.length) < MIN_TREEIFY_CAPACITY)// 后面我们再详细分析这个方法tryPresize(n << 1);// b 是头节点else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {// 加锁synchronized (b) {if (tabAt(tab, index) == b) {// 下面就是遍历链表,建立一颗红黑树TreeNode<K,V> hd = null, tl = null;for (Node<K,V> e = b; e != null; e = e.next) {TreeNode<K,V> p =new TreeNode<K,V>(e.hash, e.key, e.val,null, null);if ((p.prev = tl) == null)hd = p;elsetl.next = p;tl = p;}// 将红黑树设置到数组相应位置中setTabAt(tab, index, new TreeBin<K,V>(hd));}}}}
}

4.6、扩容: tryPresize

如果说 Java8 ConcurrentHashMap 的源码不简单,那么说的就是扩容操作和迁移操作。

这个方法要完完全全看懂还需要看之后的 transfer 方法,读者应该提前知道这点。

这里的扩容也是做翻倍扩容的,扩容后数组容量为原来的 2 倍。

// 首先要说明的是,方法参数 size 传进来的时候就已经翻了倍了
private final void tryPresize(int size) {// c: size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :tableSizeFor(size + (size >>> 1) + 1);int sc;while ((sc = sizeCtl) >= 0) {Node<K,V>[] tab = table; int n;// 这个 if 分支和之前说的初始化数组的代码基本上是一样的,在这里,我们可以不用管这块代码if (tab == null || (n = tab.length) == 0) {n = (sc > c) ? sc : c;if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {try {if (table == tab) {@SuppressWarnings("unchecked")Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];table = nt;sc = n - (n >>> 2); // 0.75 * n}} finally {sizeCtl = sc;}}}else if (c <= sc || n >= MAXIMUM_CAPACITY)break;else if (tab == table) {// 我没看懂 rs 的真正含义是什么,不过也关系不大int rs = resizeStamp(n);if (sc < 0) {Node<K,V>[] nt;if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||transferIndex <= 0)break;// 2. 用 CAS 将 sizeCtl 加 1,然后执行 transfer 方法//    此时 nextTab 不为 nullif (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))transfer(tab, nt);}// 1. 将 sizeCtl 设置为 (rs << RESIZE_STAMP_SHIFT) + 2)//     我是没看懂这个值真正的意义是什么? 不过可以计算出来的是,结果是一个比较大的负数//  调用 transfer 方法,此时 nextTab 参数为 nullelse if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))transfer(tab, null);}}
}

这个方法的核心在于 sizeCtl 值的操作,首先将其设置为一个负数,然后执行 transfer(tab, null),再下一个循环将 sizeCtl 加 1,并执行 transfer(tab, nt),之后可能是继续 sizeCtl 加 1,并执行 transfer(tab, nt)。

所以,可能的操作就是执行 1 次 transfer(tab, null) + 多次 transfer(tab, nt),这里怎么结束循环的需要看完 transfer 源码才清楚。

4.7、数据迁移: transfer

下面这个方法有点长,将原来的 tab 数组的元素迁移到新的 nextTab 数组中。

虽然我们之前说的 tryPresize 方法中多次调用 transfer 不涉及多线程,但是这个 transfer 方法可以在其他地方被调用,典型地,我们之前在说 put 方法的时候就说过了,请往上看 put 方法,是不是有个地方调用了 helpTransfer 方法,helpTransfer 方法会调用 transfer 方法的。

此方法支持多线程执行,外围调用此方法的时候,会保证第一个发起数据迁移的线程,nextTab 参数为 null,之后再调用此方法的时候,nextTab 不会为 null。

阅读源码之前,先要理解并发操作的机制。原数组长度为 n,所以我们有 n 个迁移任务,让每个线程每次负责一个小任务是最简单的,每做完一个任务再检测是否有其他没做完的任务,帮助迁移就可以了,而 Doug Lea 使用了一个 stride,简单理解就是步长,每个线程每次负责迁移其中的一部分,如每次迁移 16 个小任务。所以,我们就需要一个全局的调度者来安排哪个线程执行哪几个任务,这个就是属性 transferIndex 的作用。

第一个发起数据迁移的线程会将 transferIndex 指向原数组最后的位置,然后从后往前的 stride 个任务属于第一个线程,然后将 transferIndex 指向新的位置,再往前的 stride 个任务属于第二个线程,依此类推。当然,这里说的第二个线程不是真的一定指代了第二个线程,也可以是同一个线程,这个读者应该能理解吧。其实就是将一个大的迁移任务分为了一个个任务包。

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {int n = tab.length, stride;// stride 在单核下直接等于 n,多核模式下为 (n>>>3)/NCPU,最小值是 16// stride 可以理解为”步长“,有 n 个位置是需要进行迁移的,//   将这 n 个任务分为多个任务包,每个任务包有 stride 个任务if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)stride = MIN_TRANSFER_STRIDE; // subdivide range// 如果 nextTab 为 null,先进行一次初始化//    前面我们说了,外围会保证第一个发起迁移的线程调用此方法时,参数 nextTab 为 null//       之后参与迁移的线程调用此方法时,nextTab 不会为 nullif (nextTab == null) {try {// 容量翻倍Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];nextTab = nt;} catch (Throwable ex) {      // try to cope with OOMEsizeCtl = Integer.MAX_VALUE;return;}// nextTable 是 ConcurrentHashMap 中的属性nextTable = nextTab;// transferIndex 也是 ConcurrentHashMap 的属性,用于控制迁移的位置transferIndex = n;}int nextn = nextTab.length;// ForwardingNode 翻译过来就是正在被迁移的 Node// 这个构造方法会生成一个Node,key、value 和 next 都为 null,关键是 hash 为 MOVED// 后面我们会看到,原数组中位置 i 处的节点完成迁移工作后,//    就会将位置 i 处设置为这个 ForwardingNode,用来告诉其他线程该位置已经处理过了//    所以它其实相当于是一个标志。ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);// advance 指的是做完了一个位置的迁移工作,可以准备做下一个位置的了boolean advance = true;boolean finishing = false; // to ensure sweep before committing nextTab/** 下面这个 for 循环,最难理解的在前面,而要看懂它们,应该先看懂后面的,然后再倒回来看* */// i 是位置索引,bound 是边界,注意是从后往前for (int i = 0, bound = 0;;) {Node<K,V> f; int fh;// 下面这个 while 真的是不好理解// advance 为 true 表示可以进行下一个位置的迁移了//   简单理解结局: i 指向了 transferIndex,bound 指向了 transferIndex-stridewhile (advance) {int nextIndex, nextBound;if (--i >= bound || finishing)advance = false;// 将 transferIndex 值赋给 nextIndex// 这里 transferIndex 一旦小于等于 0,说明原数组的所有位置都有相应的线程去处理了else if ((nextIndex = transferIndex) <= 0) {i = -1;advance = false;}else if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex,nextBound = (nextIndex > stride ?nextIndex - stride : 0))) {// 看括号中的代码,nextBound 是这次迁移任务的边界,注意,是从后往前bound = nextBound;i = nextIndex - 1;advance = false;}}if (i < 0 || i >= n || i + n >= nextn) {int sc;if (finishing) {// 所有的迁移操作已经完成nextTable = null;// 将新的 nextTab 赋值给 table 属性,完成迁移table = nextTab;// 重新计算 sizeCtl: n 是原数组长度,所以 sizeCtl 得出的值将是新数组长度的 0.75 倍sizeCtl = (n << 1) - (n >>> 1);return;}// 之前我们说过,sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2// 然后,每有一个线程参与迁移就会将 sizeCtl 加 1,// 这里使用 CAS 操作对 sizeCtl 进行减 1,代表做完了属于自己的任务if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {// 任务结束,方法退出if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)return;// 到这里,说明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,// 也就是说,所有的迁移任务都做完了,也就会进入到上面的 if(finishing){} 分支了finishing = advance = true;i = n; // recheck before commit}}// 如果位置 i 处是空的,没有任何节点,那么放入刚刚初始化的 ForwardingNode ”空节点“else if ((f = tabAt(tab, i)) == null)advance = casTabAt(tab, i, null, fwd);// 该位置处是一个 ForwardingNode,代表该位置已经迁移过了else if ((fh = f.hash) == MOVED)advance = true; // already processedelse {// 对数组该位置处的结点加锁,开始处理数组该位置处的迁移工作synchronized (f) {if (tabAt(tab, i) == f) {Node<K,V> ln, hn;// 头节点的 hash 大于 0,说明是链表的 Node 节点if (fh >= 0) {// 下面这一块和 Java7 中的 ConcurrentHashMap 迁移是差不多的,// 需要将链表一分为二,//   找到原链表中的 lastRun,然后 lastRun 及其之后的节点是一起进行迁移的//   lastRun 之前的节点需要进行克隆,然后分到两个链表中int runBit = fh & n;Node<K,V> lastRun = f;for (Node<K,V> p = f.next; p != null; p = p.next) {int b = p.hash & n;if (b != runBit) {runBit = b;lastRun = p;}}if (runBit == 0) {ln = lastRun;hn = null;}else {hn = lastRun;ln = null;}for (Node<K,V> p = f; p != lastRun; p = p.next) {int ph = p.hash; K pk = p.key; V pv = p.val;if ((ph & n) == 0)ln = new Node<K,V>(ph, pk, pv, ln);elsehn = new Node<K,V>(ph, pk, pv, hn);}// 其中的一个链表放在新数组的位置 isetTabAt(nextTab, i, ln);// 另一个链表放在新数组的位置 i+nsetTabAt(nextTab, i + n, hn);// 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,//    其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了setTabAt(tab, i, fwd);// advance 设置为 true,代表该位置已经迁移完毕advance = true;}else if (f instanceof TreeBin) {// 红黑树的迁移TreeBin<K,V> t = (TreeBin<K,V>)f;TreeNode<K,V> lo = null, loTail = null;TreeNode<K,V> hi = null, hiTail = null;int lc = 0, hc = 0;for (Node<K,V> e = t.first; e != null; e = e.next) {int h = e.hash;TreeNode<K,V> p = new TreeNode<K,V>(h, e.key, e.val, null, null);if ((h & n) == 0) {if ((p.prev = loTail) == null)lo = p;elseloTail.next = p;loTail = p;++lc;}else {if ((p.prev = hiTail) == null)hi = p;elsehiTail.next = p;hiTail = p;++hc;}}// 如果一分为二后,节点数小于等于6,那么将红黑树转换回链表ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :(hc != 0) ? new TreeBin<K,V>(lo) : t;hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :(lc != 0) ? new TreeBin<K,V>(hi) : t;// 将 ln 放置在新数组的位置 isetTabAt(nextTab, i, ln);// 将 hn 放置在新数组的位置 i+nsetTabAt(nextTab, i + n, hn);// 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,//    其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了setTabAt(tab, i, fwd);// advance 设置为 true,代表该位置已经迁移完毕advance = true;}}}}}
}

说到底,transfer 这个方法并没有实现所有的迁移任务,每次调用这个方法只实现了 transferIndex 往前 stride 个位置的迁移工作,其他的需要由外围来控制。

这个时候,再回去仔细看 tryPresize 方法可能就会更加清晰一些了。

4.8、get 过程分析

get 方法从来都是最简单的,这里也不例外:

  • 计算 hash 值
  • 根据 hash 值找到数组对应位置: (n - 1) & h
  • 根据该位置处结点性质进行相应查找
    • 如果该位置为 null,那么直接返回 null 就可以了
    • 如果该位置处的节点刚好就是我们需要的,返回该节点的值即可
    • 如果该位置节点的 hash 值小于 0,说明正在扩容,或者是红黑树,后面我们再介绍 find 方法
    • 如果以上 3 条都不满足,那就是链表,进行遍历比对即可
public V get(Object key) {Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;int h = spread(key.hashCode());if ((tab = table) != null && (n = tab.length) > 0 &&(e = tabAt(tab, (n - 1) & h)) != null) {// 判断头节点是否就是我们需要的节点if ((eh = e.hash) == h) {if ((ek = e.key) == key || (ek != null && key.equals(ek)))return e.val;}// 如果头节点的 hash 小于 0,说明 正在扩容,或者该位置是红黑树else if (eh < 0)// 参考 ForwardingNode.find(int h, Object k) 和 TreeBin.find(int h, Object k)return (p = e.find(h, key)) != null ? p.val : null;// 遍历链表while ((e = e.next) != null) {if (e.hash == h &&((ek = e.key) == key || (ek != null && key.equals(ek))))return e.val;}}return null;
}

简单说一句,此方法的大部分内容都很简单,只有正好碰到扩容的情况,ForwardingNode.find(int h, Object k) 稍微复杂一些,不过在了解了数据迁移的过程后,这个也就不难了,所以限于篇幅这里也不展开说了。

5、对比总结

  • HashTable : 使用了synchronized关键字对put等操作进行加锁;

  • ConcurrentHashMap JDK1.7: 使用分段锁机制实现;

  • ConcurrentHashMap JDK1.8: 则使用数组+链表+红黑树数据结构和CAS原子操作实现;

  • 不同版本的ConcurrentHashMap区别

版本数据结构线程安全实现方式
jdk1.7Segment 数组和多个 HashEntry 组成分段锁(Segment,继承了ReentrantLock)
jdk1.8数组+链表+红黑树CAS + Synchronized

6、ConcurrentHashMap使用案例

这个案例是来演示session会话续期策略的,倘若是用户再次登录系统,会更新其sessionKey的超期时间。renewal为延续session会话,使用的数据结构为ReentrantReadWriteLock读写锁以及ConcurrentHashMap来保存会话信息。

// redis session读取,会话续期
public class RedisSessionManager {/*** 会话map   ReentrantReadWriteLock 读锁共享  写锁互斥*/private final ReadWriteLock rwl = new ReentrantReadWriteLock();private ConcurrentMap<String, Long> sessionKeyMap = new ConcurrentHashMap<>();private void addToReNewMap(String id, long lastAccessAt) {rwl.readLock().lock();try {if (sessionKeyMap.size() < 102400) {sessionKeyMap.put(id, lastAccessAt);}} finally {rwl.readLock().unlock();}}public void renewal() {Map<String, Long> localSessionKeyMap;rwl.writeLock().lock();try {localSessionKeyMap = sessionKeyMap;sessionKeyMap = new ConcurrentHashMap<>();} finally {rwl.writeLock().unlock();}localSessionKeyMap = Iters.nullToEmpty(localSessionKeyMap);if (localSessionKeyMap.size() > 0) {LOGGER.warn("renewal session size = {}", localSessionKeyMap.size());localSessionKeyMap.forEach(this.expirationPolicy::onExpirationUpdated);}}
}

ConcurrentHashMap在项目中的使用?

  • todo

Action1:讲讲为什么ConcurrentHashMap是并发安全的吧,既然有锁怎么去统计size呢?

  • xxx,从1.7讲到1.8,从分段锁讲到cas+sync…size的统计1.7和1.8也有区别

Action2:ConcurrentHashMap为啥线程安全呢?(10分)

put操作采用 CAS+synchronized 实现并发插入或更新操作

参考文章

  • Java 并发工具包 java.util.concurrent 用户指南

  • Java Concurrency and Multithreading Tutorial

  • 并发容器之ConcurrentHashMap(JDK 1.8版本)

  • Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析

  • Java并发包concurrent——ConcurrentHashMap

  • 【JUC】JDK1.8源码分析之ConcurrentHashMap

  • 探索jdk8之ConcurrentHashMap 的实现机制

  • 面试被问到 ConcurrentHashMap答不出 ,看这一篇就够了!

相关文章:

JUC第十五讲:JUC集合-ConcurrentHashMap详解(面试的重点)

JUC第十五讲&#xff1a;JUC集合-ConcurrentHashMap详解 本文是JUC第十五讲&#xff1a;JUC集合-ConcurrentHashMap详解。JDK1.7之前的ConcurrentHashMap使用分段锁机制实现&#xff0c;JDK1.8则使用数组链表红黑树数据结构和CAS原子操作实现ConcurrentHashMap&#xff1b;本文…...

【TensorFlow Hub】:有 100 个预训练模型等你用

要访问TensorFlow Hub&#xff0c;请单击此处 — https://www.tensorflow.org/hub 一、说明 TensorFlow Hub是一个库&#xff0c;用于在TensorFlow中发布&#xff0c;发现和使用可重用模型。它提供了一种使用预训练模型执行各种任务&#xff08;如图像分类、文本分析等&#xf…...

vulnhub靶机doubletrouble

下载地址&#xff1a;doubletrouble: 1 ~ VulnHub 主机发现 arp-scan -l 端口扫描 nmap --min-rate 1000 -p- 192.168.21.151 端口服务扫描 nmap -sV -sT -O -p22,80 192.168.21.151 漏洞扫描 nmap --scriptvuln -p22,80 192.168.21.151 先去看看web页面 这里使用的是qdpm …...

【数据结构】排序算法(二)—>冒泡排序、快速排序、归并排序、计数排序

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.冒泡排序 2.快速排序 2.1Hoare版 2.2占…...

SpringCloud-消息组件

1 简介 了解过RabbitMQ后&#xff0c;可能我们会遇到不同的系统在用不同的队列。比如系统A用的Kafka&#xff0c;系统B用的RabbitMQ&#xff0c;但是没了解过Kafka&#xff0c;因此可以使用Spring Stream&#xff0c;它能够屏蔽地产&#xff0c;像JDBC一样&#xff0c;只关心SQ…...

oringin的x轴(按x轴规定值)绘制不规律的横坐标

1.双击x轴 2.选择刻度线标签 3.选择刻度...

ubuntu安装MySQL

一行指令即可! sudo apt install mysql-server常用MySQL服务指令 sudo service mysql status # 查看服务状态 sudo service mysql start # 启动服务 sudo service mysql stop # 停止服务 sudo service mysql restart # 重启服务终端里面进入Mysql 其中-u后面root是我的用户名…...

背包问题学习笔记-多重背包问题

题意描述&#xff1a; 有 N 种物品和一个容量是 V 的背包。第 i 种物品最多有 si 件&#xff0c;每件体积是 vi&#xff0c;价值是 wi。求解将哪些物品装入背包&#xff0c;可使物品体积总和不超过背包容量&#xff0c;且价值总和最大。 输出最大价值。输入格式 第一行两个整数…...

Net相关的各类开源项目

Net相关的各类开源项目 WPFHandyControlLive-ChartsWPFDeveloperswpf-uidesignStylet WebScheduleMasterYiShaAdminBlog.CoreNebula.AdminNewLife.CubeOpenAuth UnityuGUIUnityCsReferenceEpitomeMyUnityFrameWorkKSFrameworkTowerDefense-GameFramework-Demo 通用ClientServer…...

阿里云服务器修改IP地址的两种方法

阿里云服务器可以更换IP地址吗&#xff1f;可以的&#xff0c;创建6小时以内的云服务器ECS可以免费更换三次公网IP地址&#xff0c;超过6小时的云服务器&#xff0c;可以将公网固定IP地址转成弹性EIP&#xff0c;然后通过换绑EIP的方式来更换IP地址。阿里云服务器网分享阿里云服…...

SpringMVC的数据绑定

一、前言 SpringMVC的数据绑定是指将HTTP请求参数绑定到Java对象上。这样可以方便地从请求中获取数据并将其传递给业务逻辑。在SpringMVC中&#xff0c;可以使用RequestParam和ModelAttribute等注解来实现数据绑定。 二、使用RequestParam注解 RequestParam注解用于将请求参…...

1.1.OpenCV技能树--第一单元--OpenCV简介

目录 1.文章内容来源 2.OpenCV简介 3.课后习题代码复现 4.易错点总结与反思 1.文章内容来源 1.题目来源:https://edu.csdn.net/skill/practice/opencv-77f629e4593845b0bf97e74ca8ec95ae/8292?languageopencv&materialId20807 2.资料来源:https://edu.csdn.net/skill…...

transformer不同的包加载模型的结构不一样

AutoModel AutoModelForTokenClassification 结论&#xff1a; AutoModel加载的模型与AutoModelForTokenClassification最后一层是不一样的&#xff0c;从这个模型来看&#xff0c;AutoModelForTokenClassification加载的结果是对的 问题&#xff1a; 为什么AutoModel和Aut…...

【MyBatis-Plus】快速精通Mybatis-plus框架—核心功能

刚才的案例中都是以id为条件的简单CRUD&#xff0c;一些复杂条件的SQL语句就要用到一些更高级的功能了。 1.条件构造器 除了新增以外&#xff0c;修改、删除、查询的SQL语句都需要指定where条件。因此BaseMapper中提供的相关方法除了以id作为where条件以外&#xff0c;还支持…...

C语言:选择+编程(每日一练Day9)

目录 选择题&#xff1a; 题一&#xff1a; 题二&#xff1a; 题三&#xff1a; 题四&#xff1a; 题五&#xff1a; 编程题&#xff1a; 题一&#xff1a;自除数 思路一&#xff1a; 题二&#xff1a;除自身以外数组的乘积 思路二&#xff1a; 本人实力有限可能对…...

蓝桥等考Python组别十三级003

第一部分:选择题 1、Python L13 (15分) 运行下面程序,输出的结果是( )。 t = (1, 2, 2, 1, 4, 3, 2) print(t.count(2)) 1234正确答案:C 2、Python L13 (...

2023年CSP-J真题详解+分析数据(选择题篇)

目录 前言 2023CSP-J江苏卷详解 小结 前言 下面由我来给大家讲解一下CSP-J的选择题部分。 2023CSP-J江苏卷详解 1.答案 A 解析&#xff1a;const在C中是常量的意思&#xff0c;其作用是声明一个变量&#xff0c;值从头至尾不能被修改 2.答案 D 解析&#xff1a;八进制…...

基于三平面映射的地形纹理化【Triplanar Mapping】

你可能遇到过这样的地形&#xff1a;悬崖陡峭的一侧的纹理拉伸得如此之大&#xff0c;以至于看起来不切实际。 也许你有一个程序化生成的世界&#xff0c;你无法对其进行 UV 展开和纹理处理。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 三平面映射&#xff08;Trip…...

初步了解nodejs语法和web模块

在此&#xff0c; 第一个Node.js实例_js firstnode-CSDN博客 通过node运行一个简单的server.js&#xff0c;实现了一个http服务器&#xff1b; 但是还没有解析server.js的代码&#xff0c;下面看一下&#xff1b; require 指令 在 Node.js 中&#xff0c;使用 require 指令来…...

51单片机+EC11编码器实现可调参菜单+OLED屏幕显示

51单片机+EC11编码器实现可调参菜单+OLED屏幕显示 📍相关篇《stc单片机使用外部中断+EC11编码器实现计数功能》 🎈《STC单片机+EC11编码器实现调节PWM输出占空比》 🌼实际操作效果 🍁整个项目实现框架: 📓EC11接线原理图: 📓项目工程简介 📝仅凭借一个EC11编…...

数据结构刷题训练——二叉树篇(一)

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…...

2023版 STM32实战5 基本定时器中断

基本定时器简介与特性 -1-时钟可分频 -2-计数模式只可以选择累加 -3-只可以用来定时&#xff08;含中断&#xff09; 查看时钟源 如图定时器7的时钟最大为72MHZ 定时时间的计算 通用定时器的时间计算公式为 Tout &#xff08;&#xff08;arr1&#xff09;&#xff08;psc1&…...

css3实现页面元素抖动效果

html <div id"shake" class"shape">horizontal shake</div>js&#xff08;vue3&#xff09; function shake(elemId) {const elem document.getElementById(elemId)console.log(获取el, elem)if (elem) {elem.classList.add(shake)setTimeou…...

[架构之路-232]:操作系统 - 文件系统存储方法汇总

目录 前言&#xff1a; 一、文件系统存储方法基本原理和常见应用案例&#xff1a; 二、Windows FAT文件系统 2.1 概述 三、Linux EXT文件系统 3.1 基本原理 3.2 索引节点表&#xff08;Inode Table&#xff09; 3.2.1 索引节点表层次结构 3.2.2 间接索引表的大小和表项…...

简述 AOP 动态代理

一、AopAutoConfiguration 源码&#xff1a; Configuration(proxyBeanMethods false) ConditionalOnProperty(prefix "spring.aop", name "auto", havingValue "true", matchIfMissing true) public class AopAutoConfiguration {Configur…...

机器学习基础之《分类算法(8)—随机森林》

一、什么是集成学习方法 1、定义 集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型&#xff0c;各自独立地学习和作出预测。这些预测最后结合成组合预测&#xff0c;因此优于任何一个单分类的做出预测 谚语&#xff1a;三个臭皮匠顶个诸…...

Python数据攻略-Pandas进行CSV和Excel文件读写

在数据分析的世界里,能够读取和写入不同格式的文件是一项基本而重要的技能。CSV(逗号分隔值)和Excel是两种常见的数据存储格式。它们在商业、科研、教育等多个领域都有广泛应用。 文章目录 读取CSV文件`pd.read_csv()` 文件读取函数的基本用法`DataFrame.to_csv()` 数据写入…...

lv7 嵌入式开发-网络编程开发 13 UNIX域套接字

1 UNIX 域流式套接字 本地地址 struct sockaddr_un {unsigned short sun_family; /* 协议类型 */char sun_path[108]; /* 套接字文件路径 */ };UNIX 域流式套接字的用法和 TCP 套接字基本一致&#xff0c;区别在于使用的协议和地址不同 UNIX 域流式套接字服务器端…...

blender光照系统设置

0&#xff09;Viewport Shading设置里面的Lighting下面的参数&#xff1a; Scene Lights,Scene World - Scene Lights是指在渲染模式下是否使用场景中的灯光对象来照亮物体。 - Scene World是指在渲染模式下是否使用场景中的世界设置来作为背景和环境光。如果关闭该选项&#…...

华为云云耀云服务器L实例评测|基于canal缓存自动更新流程 SpringBoot项目应用案例和源码

前言 最近华为云云耀云服务器L实例上新&#xff0c;也搞了一台来玩&#xff0c;期间遇到各种问题&#xff0c;在解决问题的过程中学到不少和运维相关的知识。 在之前的博客中&#xff0c;介绍过canal的安装和配置&#xff0c;参考博客 拉取创建canal镜像配置相关参数 & …...

有没有必要为B2B网站做外链/张文宏说上海可能是疫情爆发

一 、重要知识点&#xff1a; ▉1.platform设备模型 从Linux 2.6起引入了一套新的驱动管理和注册机制&#xff0c;platform_device和platform_driver,Linux中大部分的设备驱动都可以使用这套机制。platform是一条虚拟的总线。设备用platform_device表示&#xff0c;驱动用platf…...

上海建立公司网站/上海网站seo外包

虽然有ColumnHeaderMouseDoubleClick事件&#xff0c;但是其总是在DoubleClick和CellMouseDoubleClick事件之后才响应该事件。要控制该事件只能通过获取鼠标点击的位置来判断点击的区域是否是ColumnHeader&#xff0c;来执行相应的操作。 1 private void dgvPatientList_CellM…...

网站关键词可以修改吗/学编程的正规学校

PMP的知识点最终是要以考试题的形式出现的&#xff0c;而且PMP考试题量很大&#xff0c;平均只有1分钟做一道题&#xff0c;因此必须通过大量的做题来增加题感。而且做题能最快的检验我们对每个知识点的掌握情况。 正在备考的朋友要坚持呀~ 第❶题 在你所负责的一个产品研发…...

wordpress.com log in/个人网站设计

Bash Shell–使用 Linux环境变量 环境变量 bash shell用一个叫作环境变量&#xff08; environment variable&#xff09;的特性来存储有关shell会话和工作环境的信息。 这项特性允许你在内存中存储数据&#xff0c;以便程序或shell中运行的脚本能够轻松访问到它们。 在bash …...

网站做第三方支付/电脑培训网上培训班

在做一个文本框自动完成的小插件时&#xff0c; 发现一个问题&#xff1a; 如想搜索叫“林”某某的人&#xff0c; 输入“林”时&#xff0c; 出来的列表&#xff0c; 不是以“林”开头&#xff0c; 而是“陈X林”&#xff0c; 郁闷……闲暇时想了下修改的方法&#xff1a; -…...

使用阿里云做镜像网站/信息流推广的竞价机制是

mac本身安装了ssh服务&#xff0c;默认情况下不会开机自启 1.启动sshd服务&#xff1a; sudo launchctl load -w /System/Library/LaunchDaemons/ssh.plist 2.停止sshd服务&#xff1a; sudo launchctl unload -w /System/Library/LaunchDaemons/ssh.plist 3查看是否启动&am…...