当前位置: 首页 > news >正文

李沐深度学习记录5:13.Dropout

Dropout从零开始实现

import torch
from torch import nn
from d2l import torch as d2l# 定义Dropout函数
def dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return X#torch.rand生成0-1之间的均匀分布随机数,将其值与dropout概率作比较,得到布尔类型结果由mask存储#布尔类型为0的则为随机丢弃置0的隐藏层单元,留下的则进行值的替换h-->h/(1-p)mask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)# 测试dropout函数
# X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
# print(X)
# print(dropout_layer(X, 0.))
# print(dropout_layer(X, 0.5))
# print(dropout_layer(X, 1.))#定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256#定义模型
dropout1, dropout2 = 0.2, 0.5class Net(nn.Module):  #写一个模型类继承nn.Moduledef __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training = True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_training#定义三个全连接层和激活函数self.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs)))) #第一层全连接层加激活函数# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)#训练和测试
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

Dropout简洁实现

import torch
from torch import nn
from d2l import torch as d2l#定义模型参数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256#定义模型
dropout1, dropout2 = 0.2, 0.5#定义模型
net=nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),#第一个全连接层之后添加一个Dropout层nn.Dropout(dropout1),nn.Linear(256,256),nn.ReLU(),#第二个全连接层之后添加一个Dropout层nn.Dropout(dropout2),nn.Linear(256,10))
#参数初始化
def init_weights(m):if type(m)==nn.Linear:nn.init.normal_(m.weight,std=0.01)net.apply(init_weights)

在这里插入图片描述

#读取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)#训练测试
num_epochs,lr=10,0.5
loss = nn.CrossEntropyLoss(reduction='none')
trainer=torch.optim.SGD(net.parameters(),lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)

在这里插入图片描述

相关文章:

李沐深度学习记录5:13.Dropout

Dropout从零开始实现 import torch from torch import nn from d2l import torch as d2l# 定义Dropout函数 def dropout_layer(X, dropout):assert 0 < dropout < 1# 在本情况中&#xff0c;所有元素都被丢弃if dropout 1:return torch.zeros_like(X)# 在本情况中&…...

计算机竞赛 题目:基于大数据的用户画像分析系统 数据分析 开题

文章目录 1 前言2 用户画像分析概述2.1 用户画像构建的相关技术2.2 标签体系2.3 标签优先级 3 实站 - 百货商场用户画像描述与价值分析3.1 数据格式3.2 数据预处理3.3 会员年龄构成3.4 订单占比 消费画像3.5 季度偏好画像3.6 会员用户画像与特征3.6.1 构建会员用户业务特征标签…...

MFC ExtTextOut函数学习

ExtTextOut - 扩展的文本输出&#xff1b; win32 api的声明如下&#xff1b; ExtTextOut( DC: HDC; {设备环境句柄} X, Y: Integer; {起点坐标} Options: Longint; {选项} Rect: PRect; {指定显示范围; 0 表示限制范围} Str: PChar; {字符串…...

Java中阻塞队列原理、特点、适用场景

文章目录 阻塞队列对比、总览阻塞队列本质思想主要队列讲解ArrayBlockingQueueLinkedBlockingQueueSynchronousQueueLinkedTransferQueuePriorityBlockingQueueDelayQueueLinkedBlockingDeque 阻塞队列对比、总览 阻塞队列本质思想 阻塞队列都是线程安全的队列. 其最主要的功能…...

PHP之linux、apache和nginx与安全优化面试题

1.linux常用命令 查看目录pwd 创建文件touch 创建目录mkdir 删除文件rm 删除目录rmdir移动改名文件 mc 查询目录find 修改权限chmod 压缩包 tar 安装 yum install 修改文件vi查看进程ps 停止进程kill 定时任务crontab 2、nginx的优化 gzip压缩优化 expires缓存…...

算法笔记:0-1背包问题

n个商品组成集合O&#xff0c;每个商品有两个属性vi&#xff08;体积&#xff09;和pi&#xff08;价格&#xff09;&#xff0c;背包容量为C。 求解一个商品子集S&#xff0c;令 优化目标 1. 枚举所有商品组合 共2^n - 1种情况 2. 递归求解 KnapsackSR(h, i, c)&#xff…...

C++入门-day02

引言&#xff1a;在上一节中我们接触了C中的命名空间&#xff0c;学会了C中的标准输出流。这一节&#xff0c;我标题一们讲讲缺省、重载。 一、缺省参数 在C中&#xff0c;给函数的形参默认给一个值就是缺省参数&#xff0c;你可能会比较懵逼&#xff0c;下面看一段代码。 正常…...

模板方法模式,基于继承实现的简单的设计模式(设计模式与开发实践 P11)

文章目录 实现举例应用钩子 Hook 模板方法模式是一种基于继承的设计模式&#xff0c;由两部分构成&#xff1a; 抽象父类&#xff08;一般封装了子类的算法框架&#xff09;具体的实现子类 实现 简单地通过继承就可以实现 举例 足球赛 和 篮球赛 都有 3 个步骤&#xff0c…...

php实战案例记录(16)php://input输入流

php://input是PHP中的一个特殊的输入流&#xff0c;它允许访问请求的原始数据。它主要用于处理非表单的POST请求&#xff0c;例如当请求的内容类型为application/json或application/xml时。使用php://input可以获取到POST请求中的原始数据&#xff0c;无论数据是什么格式。使用…...

cad图纸如何防止盗图(一个的制造设计型企业如何保护设计图纸文件)

在现代企业中&#xff0c;设计图纸是公司的重要知识产权&#xff0c;关系到公司的核心竞争力。然而&#xff0c;随着技术的发展&#xff0c;员工获取和传播设计图纸的途径越来越多样化&#xff0c;如何有效地防止员工复制设计图纸成为了企业管理的一大挑战。本文将从技术、管理…...

Windows11 安全中心页面不可用问题(无法打开病毒和威胁防护)解决方案汇总(图文介绍版)

本文目录 Windows版本与报错信息问题详细图片&#xff1a; 解决方案:方案一、管理员权限&#xff08;若你确定你的电脑只有你一个账户&#xff0c;则此教程无效&#xff0c;若你也不清楚&#xff0c;请阅读后再做打算&#xff09;方案二、修改注册表(常用方案)方案三、进入开发…...

1329: 【C2】【排序】奖学金

题目描述 某小学最近得到了一笔赞助&#xff0c;打算拿出其中一部分为学习成绩优秀的前5名学生发奖学金。期末&#xff0c;每个学生都有3门课的成绩:语文、数学、英语。先按总分从高到低排序&#xff0c;如果两个同学总分相同&#xff0c;再按语文成绩从高到低排序&#xff0c…...

解决dockerfile创建镜像时pip install报错的bug

项目场景&#xff1a; 使用docker-compose创建django容器 问题描述 > [5/5] RUN /bin/bash -c source ~/.bashrc && python3 -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple: 0.954 Looking in indexes: https://…...

算法题:分发饼干

这个题目是贪心算法的基础练习题&#xff0c;解决思路是排序双指针谈心法&#xff0c;先将两个数组分别排序&#xff0c;优先满足最小胃口的孩子。&#xff08;本题完整题目附在了最后面&#xff09; 代码如下&#xff1a; class Solution(object):def findContentChildren(se…...

WebSocket编程golang

WebSocket编程 WebSocket协议解读 websocket和http协议的关联&#xff1a; 都是应用层协议&#xff0c;都基于tcp传输协议。跟http有良好的兼容性&#xff0c;ws和http的默认端口都是80&#xff0c;wss和https的默认端口都是443。websocket在握手阶段采用http发送数据。 we…...

PHP之redis 和 memache面试题

目录 1、什么是Redis&#xff1f;它的主要特点是什么&#xff1f; 2、redis数据类型 3、Redis的持久化机制有哪些&#xff1f;它们之间有什么区别&#xff1f; 4、Redis的主从复制是什么&#xff1f;如何配置Redis的主从复制&#xff1f; 5、Redis的集群模式是什么&#xf…...

java socket实现代理Android App

实现逻辑就是转发请求和响应。 核心代码 // 启动代理服务器private void startProxyServer() {new Thread(new ProxyServer()).start();}// 代理服务器static class ProxyServer implements Runnable {Overridepublic void run() {try {// 监听指定的端口int port 8098; //一…...

Nacos与Eureka的区别

大家好我是苏麟今天说一说Nacos与Eureka的区别. Nacos Nacos的服务实例分为两种l类型&#xff1a; 临时实例&#xff1a;如果实例宕机超过一定时间&#xff0c;会从服务列表剔除&#xff0c;默认的类型。非临时实例&#xff1a;如果实例宕机&#xff0c;不会从服务列表剔除&…...

浅谈Rob Pike的五条编程规范

又是一篇需要我们多些思考的文章~ 简介下Rob Pike Rob Pike是Unix的先驱&#xff0c;UTF-8的设计人&#xff0c;Go语言核心设计者之一。 Rob Pike的5条编程规则 原文地址&#xff1a;http://users.ece.utexas.edu/~adnan/pike.html 中文翻译&#xff1a; 罗布派克&#x…...

LeetCode 377.组合总和IV 可解决一步爬m个台阶到n阶楼顶问题( 完全背包 + 排列数)

给你一个由 不同 整数组成的数组 nums &#xff0c;和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。 题目数据保证答案符合 32 位整数范围 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3], target 4 输出&#xff1a;7 解释&#x…...

C中volatile总结

在CPU处理过程中&#xff0c;需要将内存中的数据载入到寄存器中才能计算&#xff0c;所以可能涉及到一个问题&#xff0c;如果内存中的数据被更改了&#xff0c;但是寄存器还是使用的旧数据&#xff0c;这样就会造成数据的不同步。 一、volatile关键字的作用 使用volatile关键…...

asp.net班级管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net班级管理系统 是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语言开发 asp.net班级管理系统 二、功能介绍 1…...

【Pytorch笔记】6.Transforms

pytorch官方文档 - transforms transforms需要使用计算机视觉工具包&#xff1a;torchvision。 torchvision.transforms&#xff1a;常用的图像预处理方法&#xff1b; torchvision.datasets&#xff1a;常用数据集的dataset实现&#xff0c;如MNIST、CIFAR-10、ImageNet等&am…...

nodejs+vue临沂特色产品销售平台elementui

从实际工作出发&#xff0c;对过去的临沂特色产品销售平台存在的问题进行分析&#xff0c;完善用户的使用体会。采用计算机系统来管理信息 提高了工作的效率。 随着信息化社会的形成和微电子技术日新月异的发展&#xff0c;临沂特色产品销售平台是针对目前临沂特色产品销售…...

机器学习必修课 - 使用管道 Pipeline

目标&#xff1a;学习使用管道&#xff08;pipeline&#xff09;来提高机器学习代码的效率。 1. 运行环境&#xff1a;Google Colab import pandas as pd from sklearn.model_selection import train_test_split!git clone https://github.com/JeffereyWu/Housing-prices-dat…...

WEB各类常用测试工具

一、单元测试/测试运行器 1、Jest 知名的 Java 单元测试工具&#xff0c;由 Facebook 开源&#xff0c;开箱即用。它在最基础层面被设计用于快速、简单地编写地道的 Java 测试&#xff0c;能自动模拟 require() 返回的 CommonJS 模块&#xff0c;并提供了包括内置的测试环境 …...

Naive UI 文档地址

最近几天官网访问不了&#xff0c;自己用github pages 部署了个 官网 github pages...

在CentOS7系统中安装MySQL5.7

第一步&#xff1a;下载MySQL包 > wget http://repo.mysql.com/mysql57-community-release-el7-10.noarch.rpm第二步&#xff1a;安装MySQL源 > rpm -Uvh mysql57-community-release-el7-10.noarch.rpm第三步&#xff1a;安装MySQL服务端 > yum install -y mysql-c…...

R语言通过接口获取网上数据平台的免费数据

大家好&#xff0c;我是带我去滑雪&#xff01; 作为一名统计学专业的学生&#xff0c;时常和数据打交道&#xff0c;我深知数据的重要性。数据是实证研究的重要基础&#xff0c;每当在完成一篇科研论文中的实证研究部分时&#xff0c;我都能深刻体会实证研究最复杂、最耗时的工…...

【Docker内容大集合】Docker从认识到实践再到底层原理大汇总

前言 那么这里博主先安利一些干货满满的专栏了&#xff01; 首先是博主的高质量博客的汇总&#xff0c;这个专栏里面的博客&#xff0c;都是博主最最用心写的一部分&#xff0c;干货满满&#xff0c;希望对大家有帮助。 高质量博客汇总https://blog.csdn.net/yu_cblog/categ…...

网站专业优化公司/营销型网站外包

任意三角形 任意凸四边形 算法思想 通过各部分的面积之和是否等于整个的面积,来判断点是否在形状内 C++ 示例代码: man.cpp #define TYPE 1int main() {cv::Mat img = cv::Mat(512, 512, CV_8UC1, cv::Scalar(0.));#if TYPE//149805.173649Point pt1, pt2, pt3;pt1.x =…...

ECS 安装wordpress/子域名查询工具

百万富翁问题—安全多方计算 是由图灵奖获得者姚期智提出的。 有A、B两个富翁&#xff0c;A资产i亿元&#xff0c;B资产j亿元&#xff0c;i、j均在0-10范围内&#xff0c;在互不让对方知道自己资产的情况下&#xff0c;比较A和B的资产谁多谁少。 那么如何去比较呢&#xff1f;…...

wordpress路径爆出/安卓手机游戏优化器

// 自定义字体custom new TextView(this);//xx.ttf located at assets/fonts/typeface Typeface.createFromAsset(getAssets(),"fonts/xx.ttf");custom.setTypeface(typeface); .自定义字体1.android Typeface使用TTF字体文件设置字体 我们可以在程序中放入ttf字体…...

如何做外卖网站/网络宣传的方法渠道

安装步骤 添加Nginx到YUM源sudo rpm -Uvh http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-centos-7-0.el7.ngx.noarch.rpm 安装Nginxsudo yum install -y nginx 启动Nginxsudo systemctl start nginx.service 如果一切进展顺利的话&#xff0c;现在你可以通过你…...

白银网站模板/百度客户端

π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来&#xff0c;我乐于计算π&#xff0c;也就是计算π的值。因为π是一个无理数&#xff0c;它是无限的。这就意味着任何对π的计算都仅仅是个近似值。如果你计算100位&#xff0c;我可…...

wordpress chm/品牌策划设计

用S7-200实现小车往返的自动控制 &#xff0c;控制过程为按下启动按钮 &#xff0c;小车从左边往右边(右边往左边运动) 当运动到右边(左边)碰到右边(左边)的行程开关后 小车自动做返回运动&#xff0c;当碰到另一边的行程开关后又做返回运动)&#xff0c;如此的往返运动&#x…...