当前位置: 首页 > news >正文

String 、Stringbuffer、StringBuilder区别

上代码

public class Test {public static void main(String[] args) {//String 连接10000次消耗1127ms//StringBuffer 连接10000次消耗5ms//StringBuilder 连接10000次消耗3msStringTest(10000);StringBufferTest(10000);StringBuilderTest(10000);}public static void StringTest(int n){String str = "";//获取当前系统的时间  还没有执行下面for循环的时候的时间Long startTime = System.currentTimeMillis();//使用for循环来拼接!!!for(int i=0;i<n;i++){str += i;}//获取当前系统的时间  执行下面for循环的时候的时间Long endTime = System.currentTimeMillis();System.out.println("String 连接"+ n +"次消耗"+(endTime-startTime)+"ms");}public static void StringBufferTest(int n){StringBuffer str = new StringBuffer();Long startTime = System.currentTimeMillis();for(int i=0;i<n;i++){str.append(i);}Long endTime = System.currentTimeMillis();System.out.println("StringBuffer 连接"+ n +"次消耗"+(endTime-startTime)+"ms");}public static void StringBuilderTest(int n){StringBuilder str = new StringBuilder();Long startTime = System.currentTimeMillis();for(int i=0;i<n;i++){str.append(i);}Long endTime = System.currentTimeMillis();System.out.println("StringBuilder 连接"+ n +"次消耗"+(endTime-startTime)+"ms");}
}

我们可以清楚的看到String的字符串的连接效率是最低的,这一点对于大量字符串的拼接可以很明显的表示出来,所以说大量字符串的拼接最好不要选择String。[StringBuffer]和StringBuilder对于字符串的拼接效率是大致相同的

为啥StringBUilder效率高?因为StringBuilder是线程不安全的,StringBuffer线程安全

四、总结
1.String为固定长度的字符串,StringBuilder和StringBuffer为变长字符串;
2.stringBuffer是线程安全的,StringBuilder是非线程安全的;
3.StringBuffer和StringBuilder的默认初始容量是16,可以提前预估好字符串的长度,进一步减少扩容带来的额外开销

详细看这篇

https://blog.csdn.net/pf6668/article/details/108875324

相关文章:

String 、Stringbuffer、StringBuilder区别

上代码 public class Test {public static void main(String[] args) {//String 连接10000次消耗1127ms//StringBuffer 连接10000次消耗5ms//StringBuilder 连接10000次消耗3msStringTest(10000);StringBufferTest(10000);StringBuilderTest(10000);}public static void Strin…...

如何提升爬虫IP使用效率?精打细算的方法分享

在进行爬虫数据采集时&#xff0c;爬虫IP是不可或缺的工具。然而&#xff0c;爬虫IP的费用可能是一个爬虫项目的重要开支之一。为了帮助您节省爬虫IP经费&#xff0c;本文将分享一些经济高效的方法&#xff0c;让您在使用爬虫IP时更加节约成本&#xff0c;提高经济效益。 一、优…...

(高阶) Redis 7 第19讲 缓存过期淘汰策略 大厂篇

🌹 以下分享 Redis 缓存淘汰策略,如有问题请指教。🌹🌹 如你对技术也感兴趣,欢迎交流。🌹🌹🌹 如有对阁下帮助,请👍点赞💖收藏🐱‍🏍分享😀 面试题 1. 生产上,redis内存设置的多少 2. 如何配置、修改Redis 内存大小 3. 如果内存满了,如何处理 4. …...

【四旋翼飞行器】模拟四旋翼飞行器的平移和旋转动力学(Simulink仿真实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

Kaggle - LLM Science Exam(一):赛事概述、数据收集、BERT Baseline

文章目录 一、赛事概述1.1 OpenBookQA Dataset1.2 比赛背景1.3 评估方法和代码要求1.4 比赛数据集1.5 优秀notebook 二、BERT Baseline2.1 数据预处理2.2 定义data_collator2.3 加载模型&#xff0c;配置trainer并训练2.4 预测结果并提交2.5 deberta-v3-large 1k Wiki&#xff…...

mmap底层驱动实现(remap_pfn_range函数)

mmap底层驱动实现 myfb.c&#xff08;申请了128K空间&#xff09; #include <linux/init.h> #include <linux/tty.h> #include <linux/device.h> #include <linux/export.h> #include <linux/types.h> #include <linux/module.h> #inclu…...

品牌如何查窜货

当渠道中的产品出现不按规定区域销售时&#xff0c;这种行为就叫做窜货&#xff0c;窜货不仅会扰乱渠道的健康发展&#xff0c;损害经销商的利益&#xff0c;同时会滋生低价、假货的发生&#xff0c;有效的管控窜货&#xff0c;需要品牌先将窜货链店铺找出来&#xff0c;才能进…...

Java基于SpringBoot的车辆充电桩

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 文章目录 1、效果演示效果图 技术栈2、 前言介绍&#xff08;完整源码请私聊&#xff09;3、主要技术3.4.1…...

【ARM】(1)架构简介

前言 ARM既可以认为是一个公司的名字&#xff0c;也可以认为是对一类微处理器的通称&#xff0c;还可以认为是一种技术的名字。 ARM公司是专门从事基于RISC技术芯片设计开发的公司&#xff0c;作为知识产权&#xff08;IP&#xff09;供应商&#xff0c;本身不直接从事芯片生产…...

企业完善质量、环境、健康安全三体系认证的作用及其意义!

一、ISO三体系标准作用 ISO9001&#xff1a;质量管理体系&#xff0c;专门针对企业的质量管理&#xff0c;投标首选&#xff0c;很多大客户要求企业必备这项。 ISO14001&#xff1a;环境管理体系&#xff0c;针对企业的生产环境&#xff0c;排污&#xff0c;节能环保&#xf…...

<HarmonyOS第一课>运行Hello World——闯关习题及答案

判断题 1.DevEco Studio是开发HarmonyOS应用的一站式集成开发环境。&#xff08; 对 &#xff09; 2.main_pages.json存放页面page路径配置信息。&#xff08; 对 &#xff09; 单选题 1.在stage模型中&#xff0c;下列配置文件属于AppScope文件夹的是&#xff1f;&#xff…...

NLP 02 RNN

一、RNN RNN(Recurrent Neural Network),中文称作循环神经网络它一般以序列数据为输入通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。 传统神经网络(包括CNN)&#xff0c;输入和输出都是互相独立的。但有些任务&#xff0c;后续的输出和之前…...

@PostConstruct注解

PostConstruct注解 PostConstruct注解是javax.annotation包下的一个注解&#xff0c;用于标记一个方法&#xff0c;在构造函数执行之后&#xff0c;依赖注入(如Autowired&#xff0c;意味着在方法内部可以安全地使用依赖注入的成员变量&#xff0c;而不会出现空指针异常&#…...

拓世AI|中秋节营销攻略,创意文案和海报一键生成

秋风意境多诗情&#xff0c;中秋月圆思最浓。又是一年中秋节&#xff0c;作为中国传统的重要节日之一&#xff0c;中秋节的意义早已不再仅仅是一家团圆的节日&#xff0c;更是一场商业盛宴。品牌方们纷纷加入其中&#xff0c;希望能够借助这一节日为自己的产品赢得更多的关注和…...

基于知识蒸馏的两阶段去雨去雪去雾模型学习记录(三)之知识测试阶段与评估模块

去雨去雾去雪算法分为两个阶段&#xff0c;分别是知识收集阶段与知识测试阶段&#xff0c;前面我们已经学习了知识收集阶段&#xff0c;了解到知识阶段的特征迁移模块&#xff08;CKT)与软损失&#xff08;SCRLoss&#xff09;,那么在知识收集阶段的主要重点便是HCRLoss(硬损失…...

代码随想录二刷day46

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、力扣139. 单词拆分二、力扣动态规划&#xff1a;关于多重背包&#xff0c;你该了解这些&#xff01; 前言 提示&#xff1a;以下是本篇文章正文内容&#x…...

计算机竞赛 行人重识别(person reid) - 机器视觉 深度学习 opencv python

文章目录 0 前言1 技术背景2 技术介绍3 重识别技术实现3.1 数据集3.2 Person REID3.2.1 算法原理3.2.2 算法流程图 4 实现效果5 部分代码6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习行人重识别(person reid)系统 该项目…...

在线图片转BASE64、在线BASE64转图片

图片转BASE64、BASE64转图片...

什么是RPA?一文了解RPA发展与进程!

RPA&#xff08;Robotic Process Automation&#xff0c;机器人流程自动化&#xff09;是一种通过软件机器人模拟人类在计算机上执行重复性任务的技术。RPA的核心理念是将规则、过程和数据“机器人化”&#xff0c;从而实现对业务流程的自动化。RPA技术可以显著提高企业的工作效…...

【云备份项目】【Linux】:环境搭建(g++、json库、bundle库、httplib库)

文章目录 1. g 升级到 7.3 版本2. 安装 jsoncpp 库3. 下载 bundle 数据压缩库4. 下载 httplib 库从 Win 传输文件到 Linux解压缩 1. g 升级到 7.3 版本 &#x1f517;链接跳转 2. 安装 jsoncpp 库 &#x1f517;链接跳转 3. 下载 bundle 数据压缩库 安装 git 工具 sudo yum…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...