当前位置: 首页 > news >正文

【群智能算法改进】一种改进的光学显微镜算法 IOMA算法[1]【Matlab代码#60】

文章目录

    • 【`获取资源`请见文章第5节:资源获取】
    • 1. 光学显微镜算法(OMA)
      • 1.1 物镜放大倍数
      • 1.2 目镜放大倍数
    • 2. 改进后的IOMA算法
      • 2.1 透镜成像折射方向学习
    • 3. 部分代码展示
    • 4. 仿真结果展示
    • 5. 资源获取说明


获取资源请见文章第5节:资源获取】


1. 光学显微镜算法(OMA)

光学显微镜算法(Optical Microscope Algorithm,OMA)是受显微镜放大倍数启发的一种新的元启发式算法,可用于解决工程优化问题。

新颖的 OMA 具有鲁棒性、易于实现且使用较少控制参数的特点,可用于解决各种数值优化问题。

OMA 是一种基于物理的算法,它模拟观察者放大物体的过程,从观察者的眼睛开始,然后通过显微镜镜头。OMA用于获得最佳目标对象的四步过程如下图所示。
在这里插入图片描述

1.1 物镜放大倍数

该算法中目标物体的放大倍数遵循复合显微镜使用的放大原理,并使用公式(1)进行建模。
M t o t a l = M O ∗ M E (1) M_{total}=M_{O}*M_{E}\tag1 Mtotal=MOME(1)
其中, M t o t a l M_{total} Mtotal代表显微镜的总视觉放大倍数, M O M_{O} MO是物镜的放大倍数, M E M_{E} ME并且是目镜的放大倍数。物镜的放大倍率方程一般用用公式(2)表示:
M O = L f 0 (2) M_{O}=\frac{L}{f_{0}}\tag2 MO=f0L(2)
其中, L L L是显微镜的镜筒长度, f 0 f_{0} f0是物镜的焦距。要计算这两个值,需要从最佳目标对象的位置进行参考( M b e s t M_{best} Mbest),用物镜放大。
修改后的目标对象 M i , n e w M_{i,new} Mi,new的数学表达式为:
M i , n e w = M i + m r ∗ 1.40 ∗ M b e s t (3) M_{i,new}=M_{i}+m^{r}*1.40*M_{best}\tag3 Mi,new=Mi+mr1.40Mbest(3)
修改后的目标对象( M i , n e w M_{i,new} Mi,new)然后与当前物体进行比较,选择两者中较好的一个作为最佳放大倍数。

1.2 目镜放大倍数

显微镜的第二个透镜是目镜,它是继物镜之后用来放大物体的。目镜的放大倍率方程一般用公式(4)表示:
M O = D f e (4) M_{O}=\frac{D}{f_{e}}\tag4 MO=feD(4)
其中, D D D是最短视觉距离, f e f_{e} fe并且是目镜的焦距。目镜阶段是高级放大倍率的更具体的阶段。因此,为了确定两者的长度,需要从用目镜放大的局部搜索空间的距离作为参考。
为了模拟目镜的放大效果,根据所选目标物体之间的距离确定放大空间( i i i)和群体中的另一个目标对象( j j j)。目标对象( i i i)被随机选择来计算局部搜索空间。

这种修改后的放大倍数被认为是对本地搜索空间的有效利用。公式(5)和(6)分别用于模拟目标物体的放大和修改模式。
s p a c e = { M j − M i , i f f ( M i ) > = f ( M j ) M i − M j , i f f ( M i ) < f ( M j ) (5) space=\left\{\begin{matrix}M_{j}-M_{i},\quad if \quad f(M_{i})>=f(M_{j}) \\M_{i}-M_{j},\quad if \quad f(M_{i})<f(M_{j}) \end{matrix}\right.\tag5 space={MjMi,iff(Mi)>=f(Mj)MiMj,iff(Mi)<f(Mj)(5)
M i , n e w = M i + m r ∗ 0.55 ∗ s p a c e (6) M_{i,new}=M_{i}+m^{r}*0.55*space\tag6 Mi,new=Mi+mr0.55space(6)

2. 改进后的IOMA算法

2.1 透镜成像折射方向学习

透镜成像折射反向学习策略的思想来自于凸透镜成像的原理。通过基于当前坐标生成一个反向位置来扩展搜索范围,如图1所示。
在这里插入图片描述

图1 透镜成像折射反向学习原理图

在二维坐标中,x轴的搜索范围为(a, b), y轴表示一个凸透镜。假设物体A在x轴上的投影为x,高度为h,通过透镜成像,另一侧的图像为A*, A在x轴上的投影为x,高度为h*。通过以上分析,我们可以得到如下公式:
( a + b ) / 2 − x x ∗ − ( a + b ) / 2 = h h ∗ (7) \frac{(a+b)/2-x}{x^{*}-(a+b)/2 }=\frac{h}{h^{*}} \tag7 x(a+b)/2(a+b)/2x=hh(7)
对公式(7)进行转换,即可得到反向解x*的表达式为:
x ∗ = a + b 2 + a + b 2 k − x k (8) x^{*} =\frac{a+b}{2}+\frac{a+b}{2k}-\frac{x}{k} \tag8 x=2a+b+2ka+bkx(8)
其中, k = h / h ∗ k=h/h^{*} k=h/h a a a b b b可以视为某维度的上下限。本文中的 k k k是一个与迭代次数相关的动态自适应值。

3. 部分代码展示

close all
clear 
clcSearchAgents_no=30; % Number of search agentsFunction_name='F4'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)Max_iteration=500; % Maximum numbef of iterations% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);[OMA_Best_score,OMA_Best_pos,OMA_cg_curve]=OMA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[IOMA_Best_score,IOMA_Best_pos,IOMA_cg_curve]=IOMA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);figure('Position',[500 500 660 290])
% Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])% Draw objective space
subplot(1,2,2);
semilogy(OMA_cg_curve,'Color','k','Linewidth',1.5)
hold on
semilogy(IOMA_cg_curve,'Color','r','Linewidth',1.5)
title('寻优过程')
xlabel('迭代次数');
ylabel('适应度值曲线');axis tight
grid on
box on
legend('OMA','IOMA')display(['The best solution obtained by OMA is : ', num2str(OMA_Best_pos)]);
display(['The best optimal value of the objective funciton found by OMA is : ', num2str(OMA_Best_score)]);
display(['The best solution obtained by IOMA is : ', num2str(IOMA_Best_pos)]);
display(['The best optimal value of the objective funciton found by IOMA is : ', num2str(IOMA_Best_score)]);

4. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 资源获取说明

可以获取完整代码资源。

相关文章:

【群智能算法改进】一种改进的光学显微镜算法 IOMA算法[1]【Matlab代码#60】

文章目录 【获取资源请见文章第5节&#xff1a;资源获取】1. 光学显微镜算法&#xff08;OMA&#xff09;1.1 物镜放大倍数1.2 目镜放大倍数 2. 改进后的IOMA算法2.1 透镜成像折射方向学习 3. 部分代码展示4. 仿真结果展示5. 资源获取说明 【获取资源请见文章第5节&#xff1a;…...

第三课-软件升级-Stable Diffusion教程

前言: 虽然第二课已经安装好了 SD,但你可能在其它地方课程中,会发现很多人用的和你的界面差距很大。这篇文章会讲一些容易忽略或者常常需要做的操作,不一定要完全照做,以后再回过头看看也可以。 1.控制类型 问题:为什么别人有“控制类型”部分,而我没有?如下红色方框…...

【C++】设计模式之——建造者

建造者模式概念模拟实现建造者模式代码实现 建造者模式 首先先大体了解一下&#xff0c;建造者模式是什么意思&#xff0c;它是怎么实现的&#xff1f; 首先&#xff0c;建造者模式是一种创建型设计模式再一个它是使用多个简单的对象一步一步的搭建出一个复杂的对象它可以将一个…...

【C++】基础语句(学习笔记)

一、分支 1、三种基本结构 顺序结构分支结构循环结构 2、if与switch对比 1&#xff09;使用场景 switch只支持常量值固定相等的分支判断if可以判断区间范围用switch能做的&#xff0c;用if都能做 2&#xff09;性能比较 分支少时&#xff0c;差别不是很大。分支多时&…...

大厂秋招真题【DP】米哈游20230924秋招T2-米小游与魔法少女-奇运

米哈游20230924秋招T2-米小游与魔法少女-奇运 题目描述与示例 题目描述 米小游都快保底了还没抽到希儿&#xff0c;好生气哦&#xff01;只能打会活动再拿点水晶。 米小游和世界第一可爱的魔法少女 TeRiRi 正在打 BOSS&#xff0c;BOSS 的血量为h&#xff0c;当 BOSS 血量小…...

LVS+Keepalived 高可用集群负载均衡

一.keepalived介绍 1.1.Keepalived实现原理 由多台路由器组成一个热备组&#xff0c;通过共用的虚拟IP地址对外提供服务。 每个热备组内同时只有一台主路由器提供服务&#xff0c;其他路由器处于冗余状态。 若当前在线的路由器失效&#xff0c;则其他路由器会根据设置…...

Qt QList类和QLinkedList类 详解

一、QList 类 对于不同的数据类型&#xff0c;QList<T>采取不同的存储策略&#xff0c;存储策略如下&#xff1a; 如果T 是一个指针类型或指针大小的基本类型(该基本类型占有的字节数和指针类型占有的字节数相同)&#xff0c;QList<T>将数值直接存储在它的数组当…...

Mac安装GYM遇到的一些坑

以下是遇到的一些问题 安装GitHub上说的直接 pip install gym成功了&#xff0c;但是运行实例报错没安装gym[classic_control]&#xff0c;所以就全安装一下[all] 安装GitHub上说的直接 pip install gym成功了&#xff0c;但是运行实例报错没安装gym[classic_control]&#xff…...

【高级rabbitmq】

文章目录 1. 消息丢失问题1.1 发送者消息丢失1.2 MQ消息丢失1.3 消费者消息丢失1.3.1 消费失败重试机制 总结 2. 死信交换机2.1 TTL 3. 惰性队列3.1 总结&#xff1a; 4. MQ集群 消息队列在使用过程中&#xff0c;面临着很多实际问题需要思考&#xff1a; 1. 消息丢失问题 1.1…...

数百个下载能够传播 Rootkit 的恶意 NPM 软件包

供应链安全公司 ReversingLabs 警告称&#xff0c;最近观察到的一次恶意活动依靠拼写错误来诱骗用户下载恶意 NPM 软件包&#xff0c;该软件包会通过 rootkit 感染他们的系统。 该恶意软件包名为“node-hide-console-windows”&#xff0c;旨在模仿 NPM 存储库上合法的“node-…...

SpringBoot的error用全局异常去处理

记录一下使用SpringBoot2.0.5的error用全局异常去处理 在使用springboot时&#xff0c;当访问的http地址或者说是请求地址输错后&#xff0c;会返回一个页面&#xff0c;如下&#xff1a; 这是因为请求的地址不存在&#xff0c;默认会显示error页面 但我们实际需要一个接口&a…...

MyBatisPlus(十一)包含查询:in

说明 包含查询&#xff0c;对应SQL语句中的 in 语句&#xff0c;查询参数包含在入参列表之内的数据。 in Testvoid inNonEmptyList() {// 非空列表&#xff0c;作为参数List<Integer> ages Stream.of(18, 20, 22).collect(Collectors.toList());in(ages);}Testvoid in…...

Linux命令定位与查找:which、whereis和find的用法详解

文章目录 Linux命令的定位与查找1. 简介Linux路径环境变量命令行和Shell 2. which命令which命令的作用使用which命令定位可执行文件多个可执行文件的定位which命令的选项及其使用 3. whereis命令whereis命令的作用使用whereis命令查找二进制文件查找源代码文件whereis命令的选项…...

LeetCode 面试题 17.10. Find Majority Element LCCI【摩尔投票法】简单

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…...

多校联测11 模板题

题目大意 给你四个整数 n , m , s e e d , w n,m,seed,w n,m,seed,w&#xff0c;其中 n , m n,m n,m为两个多项式 A ( x ) ∑ i 0 n a i x i A(x)\sum\limits_{i0}^na_ix^i A(x)i0∑n​ai​xi和 B ( x ) ∑ i 0 m b i x i B(x)\sum\limits_{i0}^mb_ix^i B(x)i0∑m​bi​xi…...

Linux SSH连接远程服务器(免密登录、scp和sftp传输文件)

1 SSH简介 SSH&#xff08;Secure Shell&#xff0c;安全外壳&#xff09;是一种网络安全协议&#xff0c;通过加密和认证机制实现安全的访问和文件传输等业务。传统远程登录和文件传输方式&#xff0c;例如Telnet、FTP&#xff0c;使用明文传输数据&#xff0c;存在很多的安全…...

从0开始python学习-30.selenium frame子页面切换

目录 1. frame切换逻辑 2. 多层子页面情况进行切换 3. 多个子页面相互切换 1. frame切换逻辑 1.1. 子页面的类型一般分为两种 frame标签 iframe标签 1.2. 子页面里面的元素和主页面的元素是相互独立 子页面元素需要进去切换才能操作 如果已经进入子页面&#xff0c;那么…...

asp.net core 远程调试

大概说下过程&#xff1a; 1、站点发布使用Debug模式 2、拷贝到远程服务器&#xff0c;以及iis创建站点。 3、本地的VS2022的安装目录&#xff1a;C:\Program Files\Microsoft Visual Studio\2022\Professional\Common7\IDE下找Remote Debugger 你的服务器是64位就拷贝x64的目…...

Java spring boot 一次调用多个请求

Java Spring Boot是一种基于Java编程语言的开发框架&#xff0c;它提供了一种快速构建高效、可伸缩和易于维护的企业级应用程序的方式。在实际的应用开发中&#xff0c;我们常常需要调用多个独立的请求来完成某个业务功能。然而&#xff0c;传统的同步方式一次只能调用一个请求…...

DRM全解析 —— CRTC详解(4)

接前一篇文章&#xff1a;DRM全解析 —— CRTC详解&#xff08;3&#xff09; 本文继续对DRM中CRTC的核心结构struct drm_crtc的成员进行释义。 3. drm_crtc结构释义 &#xff08;21&#xff09;struct drm_object_properties properties /** properties: property tracking …...

六个为Rust构建的IDE

Rust语言的学习曲线适中&#xff0c;介于高级语言和低级语言之间。这门语言既能编写系统软件&#xff0c;将嵌入式设备编译为x86 ARM&#xff0c;也可以用于前端技术&#xff0c;这要归功于WebAssembly。 在日渐成熟的发展中&#xff0c;Rust开始拥有更好的工具来提高效率。最…...

25 Python的collections模块

概述 在上一节&#xff0c;我们介绍了Python的sqlite3模块&#xff0c;包括&#xff1a;sqlite3模块中一些常用的函数和类。在这一节&#xff0c;我们将介绍Python的collections模块。collections模块是Python中的内置模块&#xff0c;它实现了特殊的容器数据类型&#xff0c;提…...

JEPG Encoder IP verilog设计及实现

总体介绍: 采用通用的常规 Verilog 代码编写,可用于任何 FPGA。 该内核不依赖任何专有 IP 内核,而是用 Verilog 编写了实现 JPEG 编码器所需的所有功能,代码完全独立。 编码器内核的输入是一条 24 位数据总线,红色像素、绿色像素和蓝色像素各有 8 位。 信号 "data_i…...

yolov5 web端部署进行图片和视频检测

目录 1、思路 2、代码结构 3、代码运行 4、api接口代码 5、web ui界面 6、参考资料 7、代码分享 1、思路 通过搭建flask微型服务器后端&#xff0c;以后通过vue搭建网页前端。flask是第一个第三方库。与其他模块一样&#xff0c;安装时可以直接使用python的pip命令实现…...

嵌入式养成计划-34--函数库

七十二、 函数库 1. 库的概念 库是一个二进制可执行文件&#xff0c;与二进制可执行程序比较&#xff0c;库是不能单独运行的。 库中存放的是功能函数&#xff0c;没有主函数&#xff08;main函数&#xff09; 库需要被载入到内存中使用 标准的基础库中存放了很多已经写好的…...

PM864AK01-eA 3BSE018161R2 工业人工智能供应链先驱

PM864AK01-eA 3BSE018161R2 工业人工智能供应链先驱 吞吐量和Macnica Networks的战略合作伙伴关系将使Macnica Networks的客户能够加速和量化智能工厂计划的投资回报(ROI)。高管、经理和运营负责人可以使用Macnica Networks领先的制造场所数据收集平台和ThroughPut基于约束理论…...

参与现场问题解决总结(Kafka、Hbase)

一. 背景 Kafka和Hbase在现场应用广泛&#xff0c;现场问题也较多&#xff0c;本季度通过对现场问题就行跟踪和总结&#xff0c;同时结合一些调研&#xff0c;尝试提高难点问题的解决效率&#xff0c;从而提高客户和现场满意度。非难点问题&#xff08;历史遇到过问题&#xf…...

基于PSD-ML算法的语音增强算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1.加窗处理&#xff1a; 2.分帧处理&#xff1a; 3.功率谱密度估计&#xff1a; 4.滤波处理&#xff1a; 5.逆变换处理&#xff1a; 6.合并处理&#xff1a; 5.算法完整程序工程 1.算法…...

【1++的Linux】之文件(一)

&#x1f44d;作者主页&#xff1a;进击的1 &#x1f929; 专栏链接&#xff1a;【1的Linux】 文章目录 一&#xff0c;初识文件二&#xff0c;文件接口 一&#xff0c;初识文件 文件就是文件内容属性。因此对文件的操作无非就是对文件内容的操作和对文件属性的操作。 我们访问…...

Kafka 高可用

正文 一、高可用的由来 1.1 为何需要Replication 在Kafka在0.8以前的版本中&#xff0c;是没有Replication的&#xff0c;一旦某一个Broker宕机&#xff0c;则其上所有的Partition数据都不可被消费&#xff0c;这与Kafka数据持久性及Delivery Guarantee的设计目标相悖。同时Pr…...

建设网站西丽/最专业的seo公司

文章目录 前言I、定时器的基本用法1.1 添加计时器1.2 往运行循环添加timer1.3 保证定时器的运行不受UI事件影响II 停止定时器的方案2.1 invalidate的用法2.2 FireDate的用法III CADisplayLink 与 NSTimer 有什么不同?3.1 精确度3.2 使用场合3.3 注意事项IV、使用CALayer 实现时…...

网站建设公司用的什么后台/合肥关键词排名工具

Windbg工作中用的不多&#xff0c;所以命令老是记不住&#xff0c;每次使用都要重新查命令&#xff0c;挺烦。趁这次培训的机会好好测试和总结了一下&#xff0c;下次再用就方便多了。在这里一起共享一下&#xff0c;如果有错误&#xff0c;请指正。基本知识和常用命令 &#x…...

南昌网站建设制作与维护/软文标题大全

Pacemaker、corosync pacemaker详细介绍&#xff1a; http://blog.51cto.com/freeloda/1274533 corosync详细介绍&#xff1a; http://blog.51cto.com/freeloda/1272417 Pacemaker是一个集群资源管理器。它利用集群基础构件&#xff08;OpenAIS 、heartbeat或corosync&#xff…...

dw做网站背景音乐/江门网站建设

最近在用element-ui遇到一些bug,在使用el-select时,数据量大了就页面渲染缓慢从而卡顿严重,为了解决这个问题,对element-ui进行了改造,el-select改为分页滚动加载: 如上图所示的效果,大数据时下拉可以分页滚动加载,而且可以支持原来的搜索。 1.新建一个selectSearch.v…...

网站开发去哪里找程序员/项目外包平台

版权声明:本文为 小异常 原创文章,非商用自由转载-保持署名-注明出处,谢谢! 本文网址:https://sunkuan.blog.csdn.net/article/details/111676037 文章目录 一、uni指令二、数据绑定三、事件的使用本篇博客主要讲解 uni-app 的中指令、数据绑定及事件的使用,只要有 Vue 基…...

东莞建站模板代理/怎么建立网站

1.安装MySQL &#xff08;免费&#xff09; 官网现下载地址 http://dev.mysql.com/downloads/mysql/ &#xff08;我选的mysql-5.7.17-macos10.12-x86_64.dmg&#xff09; 点击download 会跳转到另外一个界面&#xff0c;这个界面是提示你需不需要注册的&#xff0c;直接选…...