当前位置: 首页 > news >正文

【Pytorch笔记】4.梯度计算

深度之眼官方账号 - 01-04-mp4-计算图与动态图机制

前置知识:计算图
可以参考我的笔记:
【学习笔记】计算机视觉与深度学习(2.全连接神经网络)

计算图

在这里插入图片描述
以这棵计算图为例。这个计算图中,叶子节点为x和w。

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)# 调用backward()方法,开始反向求梯度
y.backward()
print(w.grad)print("is_leaf:\n", w.is_leaf, x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)
print("gradient:\n", w.grad, x.grad, a.grad, b.grad, y.grad)

输出:

tensor([5.])
is_leaf:True True False False False
gradient:tensor([5.]) tensor([2.]) None None None

由此可见,非叶子节点在最后不会被保留梯度。这是出于节省空间的需要而这样设计的。实际的计算图会非常大,如果每个节点都保留梯度,会占用非常大的存储空间,而这些节点的梯度对于我们学习并没有什么帮助。

如果非要看他们的梯度,可以这样操作:在a = torch.add(w, x)的后面加上一句a.retain_grad(),这样a的梯度就会被存储起来。
输出会变成:

tensor([5.])
is_leaf:True True False False False
gradient:tensor([5.]) tensor([2.]) tensor([2.]) None None

对于节点,还可以看这些节点进行的运算。grad_fn,gradient function的缩写,表示这个节点的tensor是什么运算产生的。加一句:

print("gradient function:\n", w.grad_fn, '\n', x.grad_fn, '\n', a.grad_fn, '\n', b.grad_fn, '\n', y.grad_fn)

会输出

gradient function:NoneNone<AddBackward0 object at 0x000001B1DA3651C0><AddBackward0 object at 0x000001B1DA3651F0><MulBackward0 object at 0x000001B1DA3515B0>

retain_graph

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)a = torch.add(w, x)
a.retain_grad()
b = torch.add(w, 1)
y = torch.mul(a, b)# 调用backward()方法,开始反向求梯度
y.backward()
y.backward()

连续两次调用backward()方法,会报这样的错误:

RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

原因是我们进行第一次backward()后,计算图就被自动释放掉了,进行第二次backward()时,没有计算图可以计算梯度,于是报错。

解决方案:backward内部添加一个参数:retain_graph=True,意思是计算完梯度后保留计算图。

# 调用backward()方法,开始反向求梯度
y.backward(retain_graph=True)
y.backward()

这样就不会报错了。

gradient

当计算图末部的节点有1个以上时,有时我们会希望他们之间的梯度有一个权重关系。这时就会用上gradient

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)a = torch.add(w, x)
b = torch.add(w, 1)# 不难看出,y0和y1是两个互不干扰的末部节点
y0 = torch.mul(a, b)
y1 = torch.add(a, b)# 将两个末部节点打包起来
loss = torch.cat([y0, y1], dim=0)
grad_tensors = torch.tensor([1., 2.])# 将grad_tensors中的内容作为权重,变成y0+2y1
loss.backward(gradient=grad_tensors)print(w.grad)

输出

tensor([9.])

如果把grad_tensors改成:

grad_tensors = torch.tensor([1., 3.])

输出变成:

tensor([11.])

torch.autograd.grad()

除了加减乘除法,我们还可以对torch进行求导操作。求的是 d ( o u t p u t s ) d ( i n p u t s ) \frac{d(outputs)}{d(inputs)} d(inputs)d(outputs)

torch.autograd.grad(outputs,inputs,grad_outputs=None,retain_graph=None,create_graph=False)

outputs和inputs已在上述定义中给出;
grad_outputs:多梯度权重;
retain_graph:保留计算图;
create_graph:创建计算图。

import torch# y = x ** 2
x = torch.tensor([3.], requires_grad=True)
y = torch.pow(x, 2)# grad_1 = dy / dx = 2x = 6
grad_1 = torch.autograd.grad(y, x, create_graph=True)
print(grad_1)# grad_2 = d(dy / dx) / dx = 2
grad_2 = torch.autograd.grad(grad_1, x)
print(grad_2)

输出

(tensor([6.], grad_fn=<MulBackward0>),)
(tensor([2.]),)

autograd注意事项

1.梯度不会自动清零

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)for i in range(4):a = torch.add(w, x)b = torch.mul(w, x)y = torch.mul(a, b)y.backward()print("w's grad: ", w.grad)# w.grad.zero_()

输出:

w's grad:  tensor([8.])
w's grad:  tensor([16.])
w's grad:  tensor([24.])
w's grad:  tensor([32.])

由此可以看出,在不加上注释掉的那一行时,梯度在w处是不断累积的。而如果我们把print后面的那句w.grad.zero_()加上,输出就会变成:

w's grad:  tensor([8.])
w's grad:  tensor([8.])
w's grad:  tensor([8.])
w's grad:  tensor([8.])

w.grad.zero_()的意思就是把w处积累的梯度清零。

2.依赖于叶子节点的节点,requires_grad默认为True

可以从上面的代码中发现,我们只有在定义w和x两个tensor时,设置requires_grad为True。这个参数在定义tensor时默认为False。后面我们的a、b、y都没有设置这个参数。

如果我们定义w和x的时候不加上requires_grad=True,那么y.backward()这一步就会报错,因为我们的预设,这两个tensor不需要梯度,于是就无法求梯度。而w和x是我们计算图上的叶子节点,所以必须加上requires_grad=True。

而后面通过w和x延伸定义出的a、b、y,由于依赖的w、x的requires_grad是True,那么a、b、y的这个参数也被默认设置为了True,不需要我们手动添加。

3.叶子节点不可执行in-place操作

计算图上叶子节点处的tensor不能进行原地修改。

什么是in-place操作?
t = torch.tensor([1., 2.])
t.add_(3.)
print(t)

输出

tensor([4., 5.])

torch.Tensor.add_就是torch.add的in-place版本。所谓in-place,就是在tensor上进行原地修改。大部分的torch.tensor的运算,名字后面加一个下划线,就变成inplace操作了。

再比如求绝对值:

t = torch.tensor([-1., -2.])
t.abs_()
print(t)

输出

tensor([1., 2.])

知道什么是in-place操作后,我们尝试一下在requires_grad=True的叶子节点上原地修改,代码如下:

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)a = torch.add(w, x)
b = torch.mul(w, x)
y = torch.mul(a, b)w.add_(1)y.backward()

报错信息:

RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.

相关文章:

【Pytorch笔记】4.梯度计算

深度之眼官方账号 - 01-04-mp4-计算图与动态图机制 前置知识&#xff1a;计算图 可以参考我的笔记&#xff1a; 【学习笔记】计算机视觉与深度学习(2.全连接神经网络) 计算图 以这棵计算图为例。这个计算图中&#xff0c;叶子节点为x和w。 import torchw torch.tensor([1.]…...

浏览器安装vue调试工具

下载扩展程序文件 下载链接&#xff1a;链接: 下载连接网盘地址&#xff0c; 提取码: 0u46&#xff0c;里面有两个crx,一个适用于vue2&#xff0c;一个适用于vue3&#xff0c;可根据vue版本选择不同的调试工具 crx安装扩展程序不成功&#xff0c;将文件改为rar文件然后解压 安装…...

C/C++学习 -- RSA算法

概述 RSA算法是一种广泛应用于数据加密与解密的非对称加密算法。它由三位数学家&#xff08;Rivest、Shamir和Adleman&#xff09;在1977年提出&#xff0c;因此得名。RSA算法的核心原理是基于大素数的数学问题的难解性&#xff0c;利用两个密钥来完成加密和解密操作。 特点 …...

基于若依ruoyi-nbcio支持flowable流程增加自定义业务表单(一)

因为需要支持自定义业务表单的相关流程&#xff0c;所以需要建立相应的关联表 1、首先先建表wf_custom_form -- ---------------------------- -- Table structure for wf_custom_form -- ---------------------------- DROP TABLE IF EXISTS wf_custom_form; CREATE TABLE wf…...

面试经典 150 题 1 —(数组 / 字符串)— 88. 合并两个有序数组

88. 合并两个有序数组 方法一&#xff1a; class Solution { public:void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {for(int i 0; i<n;i){nums1[mi] nums2[i];}sort(nums1.begin(),nums1.end());} };方法二&#xff1a; clas…...

【大数据 | 综合实践】大数据技术基础综合项目 - 基于GitHub API的数据采集与分析平台

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…...

超高频RFID模具精细化生产管理方案

近二十年来&#xff0c;我国的模具行业经历了快速发展的阶段&#xff0c;然而&#xff0c;模具行业作为一个传统、复杂且竞争激烈的行业&#xff0c;企业往往以订单为导向&#xff0c;每个订单都需要进行新产品的开发&#xff0c;从客户需求分析、结构确定、报价、设计、物料准…...

FP-Growth算法全解析:理论基础与实战指导

目录 一、简介什么是频繁项集&#xff1f;什么是关联规则挖掘&#xff1f;FP-Growth算法与传统方法的对比Apriori算法Eclat算法 FP树&#xff1a;心脏部分 二、算法原理FP树的结构构建FP树第一步&#xff1a;扫描数据库并排序第二步&#xff1a;构建树 挖掘频繁项集优化&#x…...

Jmeter 分布式压测,你的系统能否承受高负载?

‍你可以使用 JMeter 来模拟高并发秒杀场景下的压力测试。这里有一个例子&#xff0c;它模拟了同时有 5000 个用户&#xff0c;循环 10 次的情况‍。 请求默认配置 token 配置 秒杀接口 ​结果分析 ​但是&#xff0c;实际企业中&#xff0c;这种压测方式根本不满足实际需求。下…...

什么是浮动密封?

浮动密封也称为机械面密封或双锥密封&#xff0c;是一种用于各种行业和应用的特殊类型的密封装置。它旨在提供有效的密封和保护&#xff0c;防止污染物的进入以及旋转设备中润滑剂或液体的润滑剂泄漏。 浮动密封件由相同的金属环组成&#xff0c;这些金属环称为密封环&#xf…...

浅析前端单元测试

对于前端来说&#xff0c;测试主要是对HTML、CSS、JavaScript进行测试&#xff0c;以确保代码的正常运行。 常见的测试有单元测试、集成测试、端到端&#xff08;e2e&#xff09;的测试。 单元测试&#xff1a;对程序中最小可测试单元进行测试。我们可以类比对汽车的测试&…...

线上mysql表字段加不了Fail to get MDL on replica during DDL synchronize,排查记录

某天接近业务高峰期想往表里加字段加不了&#xff0c;报错&#xff1a;Fail to get MDL on replica during DDL synchronize 遂等到业务空闲时操作、还是加不了&#xff0c; 最后怀疑是相关表被锁了&#xff0c;或者有事务一直进行&#xff08;可能这俩是一个意思&#xff09;&…...

vue3使用element plus的时候组件显示的是英文

问题截图 这是因为国际化导致的 解决代码 import zhCn from "element-plus/es/locale/lang/zh-cn"; 或者 import zhCn from "element-plus/lib/locale/lang/zh-cn";const localezhCn<el-config-provider :locale"locale"><el-date-pic…...

Matlab参数估计与假设检验(举例解释)

参数估计分为点估计和区间估计&#xff0c;在matlab中可以调用namefit()函数来计算参数的极大似然估计值和置信区间。而数据分析中用得最多的是正态分布参数估计。 例1 从某厂生产的滚珠中抽取10个&#xff0c;测得滚珠的直径&#xff08;单位&#xff1a;mm&#xff09;为x[…...

qt响应全局热键

QT5 QWidget响应全局热键-百度经验...

android 代码设置静态Ip地址的方法

在Android中&#xff0c;可以使用以下代码示例来设置静态IP地址&#xff1a; import android.content.Context import android.net.ConnectivityManager import android.net.LinkAddress import android.net.Network import android.net.NetworkCapabilities import android.ne…...

Elasticsearch安装访问

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎&#xff0c;设计用于云计算环境中&#xff0c;能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性&#xff0c;可以在短时间内搜索和分析大量数据。 Elasticsearch 不仅仅是一个…...

面试题-React(十):setState为什么使用异步机制?

在React中&#xff0c;setState的异步特性和异步渲染机制是开发者们经常讨论的话题。为什么React选择将setState设计为异步操作&#xff1f;异步渲染又是如何实现的&#xff1f;本篇博客将深入探究这些问题&#xff0c;通过代码示例解释为什么异步操作是React的一大亮点。 一、…...

入侵防御系统(IPS)网络安全设备介绍

入侵防御系统&#xff08;IPS&#xff09;网络安全设备介绍 1. IPS设备基础 IPS定义 IPS&#xff08;Intrusion Prevention System&#xff09;是一种网络安全设备或系统&#xff0c;用于监视、检测和阻止网络上的入侵尝试和恶意活动。它是网络安全架构中的重要组成部分&…...

【Linux基础】Linux的基本指令使用(超详细解析,小白必看系列)

&#x1f449;系列专栏&#xff1a;【Linux基础】 &#x1f648;个人主页&#xff1a;sunnyll 目录 &#x1f4a6; ls 指令 &#x1f4a6; pwd指令 &#x1f4a6;cd指令 &#x1f4a6;touch指令 &#x1f4a6;mkdir指令&#xff08;重要&#xff09; &#x1f4a6;rmdir指令…...

【无标题】Test

短视频平台的那些事 前言 过去几年&#xff0c;我一直专注于短视频平台的建设和开发工作。在这个过程中&#xff0c;我发现这个领域有着非常多的挑战和机遇&#xff0c;也涌现出了许多新的技术和创新。今天大家分享我个人的一些经验&#xff0c;希望能够为大家带来一些启发和帮…...

1576. 替换所有的问号

1576. 替换所有的问号 C代码&#xff1a;自己写的 char * modifyString(char * s){int n strlen(s);for (int i 0; i < n; i){if (s[i] ?) {if (i ! 0 && i ! n-1) {for (int j 0; j < 26; j) {if (a j ! s[i-1] && a j ! s[i1]) {s[i] a j;br…...

MySQL学习笔记(快速入门)

Mysql快速入门 一、数据库相关概念1.启动数据库2. 客户端连接3. 数据模型4.关系型数据库RDBMS 二、SQL语言1. 通用语法2. SQL分类 三、DDL数据定义语言1. 数据库操作2. 表操作&#xff08;1&#xff09; 查询当前数据库所有表show tables;&#xff08;2&#xff09; 查询表的结…...

使用DNS查询Web服务器IP地址

浏览器并不具备访问网络的功能&#xff0c;其最终是通过操作系统实现的&#xff0c;委托操作系统访问服务器时提供的并不是浏览器里面输入的域名而是ip地址&#xff0c;因此第一步需要将域名转换为对应的ip地址 域名&#xff1a;www.baidu.com ip地址是一串数字 tcp/ip的网络结…...

docker虚拟网桥和业务网段冲突处理

ifconfig查看docker虚拟网桥ip地址 docker inspect --format{{.Name}} - {{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}} $(docker ps -aq)查询所有容器的ip 修改docker-compose networks networks xxx-network: driver: bridge ipam: c…...

axios登录,登出接口的简单封装步骤详解!

目录 总结一、步骤1.安装Axios&#xff1a;2.axios对象封装3.请求api封装4.使用pinia临时库保存响应信息&#xff08;按需求用&#xff09;5.最后&#xff0c;在组件中使用&#xff01; 总结 封装axios对象&#xff0c;编写公共请求代码、添加拦截逻辑、然后分层实现axios请求…...

九大装修收纳空间的设计,收藏备用!福州中宅装饰,福州装修

如果房子面积不大&#xff0c;收纳设计就显得非常重要。其实装修房子中很多地方都可以做收纳&#xff0c;九大空间每一处都可以放下你的东西&#xff0c;让你摆脱收纳烦恼。 收纳空间少的话&#xff0c;装修完后住久了怕会乱成一窝&#xff0c;因此装修的时候&#xff0c;收纳…...

软件工程概论

文章目录 软件的定义软件的特点软件的种类软件工程的起源软件工程的三个阶段软件工程概念的提出软件开发的本质软件工程框架软件工程的目标软件工程的原则软件工程的活动 软件的定义 计算机系统中的程序及其文档。 程序是计算任务的处理对象和处理规则的描述&#xff1b; 文档…...

仅个人记录:复现dotspatialdemo、打包、

复现dotspatialdemo 原始文件 一、新建项目、工具箱设置&#xff0c;项目引用等看上一篇 二、根据Form1.Designer.cs设计界面Form1.cs[设计] SplitContainer控件&#xff1a;将容器的显示区域分成两个大小可调的、可以向其中添加控件的面板。 legend控件&#xff1a;图例 map控…...

华为云云耀云服务器L实例评测|Elasticsearch的springboot整合 Kibana进行全查询和模糊查询

前言 最近华为云云耀云服务器L实例上新&#xff0c;也搞了一台来玩&#xff0c;期间遇到各种问题&#xff0c;在解决问题的过程中学到不少和运维相关的知识。 在前几期的博客中&#xff0c;介绍了Elasticsearch的Docker版本的安装&#xff0c;Elasticsearch的可视化Kibana工具…...

诚信网站认证必需做吗/网站建设企业咨询

Path Finder mac是Mac上好用的文件管理工具&#xff0c;是一个用户友好的应用程序&#xff0c;可以比较和同步文件夹&#xff0c;查看隐藏文件&#xff0c;使用双窗格和全键盘导航来浏览文件系统&#xff0c;以节省您的时间&#xff0c;端的自定义允许您以许多不同的方式访问大…...

spring boot 网站开发/现在网络推广哪家好

​如今&#xff0c;大数据技术已渗透至电商、智慧城市、金融等社会各领域&#xff0c;审计行业也难以抵挡大数据时代的浪潮。 然而&#xff0c;在推动审计进行转型的过程中&#xff0c;“大数据审计”常常沦为“审计大数据”。许多审计部门在开发或运用审计信息系统时&#xf…...

滑县住房城乡建设厅门户网站/台州seo排名扣费

1.下载 .tar.gz 的源码包&#xff0c;进行解压tar -xvzf GraphicsMagick-1.3.18.tar解压后&#xff0c;原来在的gz文件就变成了tar文件&#xff0c;进入文件夹2. cd GraphicsMagick-1.3.12./configuremakemake install转载于:https://blog.51cto.com/libangsen/1254386...

舟山网站建设有哪些/学it学费大概多少钱

本书介绍 如何确保你的现代网络应用是安全的&#xff1f;我怀疑有人认为这是一个简单的问题。问题是&#xff0c;尽管我们都同意这是一个难题&#xff0c;但我们在如何回答这个问题上往往意见不一。当我们与客户谈论这个话题时&#xff0c;有一个词经常出现&#xff0c;这个词概…...

不允许做企业网站/近一周新闻热点事件

原文:socket在windows下和linux下的区别 1)头文件 windows下winsock.h/winsock2.h linux下sys/socket.h 错误处理&#xff1a;errno.h 2)初始化 windows下需要用WSAStartup WSADATA wsaData; err WSAStartup(0x202,&wsaData); if ( err ! 0 ) { return 0; } else if ( …...

常州免费网站制作/关键词优化seo外包

Sun即将在JavaOne大会上发布的新款开发工具竟然是针对Visual Basic用户的&#xff01;——很抱歉&#xff0c;我说这个话并没有歧视VB开发者的意思。大家都知道&#xff0c;VB通常被认为是最容易入门的一种开发工具。而Sun的新工具希望争取的目标用户正是用VB用得不爽的那一部分…...