基于可解释性特征矩阵与稀疏采样全局特征组合的人体行为识别
论文还未发表,不细说,欢迎讨论。
Title: A New Solution to Skeleton-Based Human Action Recognition via the combination usage of explainable feature extraction and sparse sampling global features.
Abstract: With the development of deep learning technology, the vision-based applications of human action recognition (HAR) have received great progress. Many methods followed the idea of data-driven and tried their best to include more and more motion features in consideration for higher accuracy purposes. However, the thought of “the more features adopted, the higher accuracy will be”will inevitably result in the ever-increasing requirement of computing power and decreasing efficiency. In this paper, in order to effectively recognize human actions with only a few of the most sensitive motion features, the explainable features, the combining usage of local and global features, and a multi-scale shallow network are proposed. First, the explainable features let a deep neural network be finetuned in the input stage, and an action represented by these features are easier to find priori theory of physics and kinematics for data augmentation purpose. Second, although criticism of the global features never stops, it is universally acknowledged that the context information included in the global feature is essential to HAR. The proposed SMHI—motion history image generated in a sparse sampling way, can not only reduce the time-cost, but also effectively reflect the motion tendency. It is suggested to be a useful complementary of local features. Third, full experiments were conducted to find out the best feature combination for HAR. The results have proved that feature selection is more important than computing all features. The proposed method is evaluated on three datasets. The experiment results proved the effectiveness and efficiency of our proposed method. Moreover, the only usage of human skeleton motion data provides privacy assurances to users.
现在大多数方法有两个问题:1. 将尽可能多的特征纳入到输入端,虽然可以增强准确率,但增加了计算负担,而且模型越来越臃肿;2. 全局特征一直处于被抛弃的境地,而其包含的上下文信息却有非常重要。针对这两点,我尝试用物理学和运动学中的先验知识提取人体行为动作特征,使其具备可解释性,然后对其优化和数据增强。并进一步找到其最有效的组合。同时,通过稀疏采样的方式构建MHI,即:只提取其运动趋势特征。使之作为local feature的有效补充。实验结果良好,特别是在效率方面有质的提升。本文的主要创新点在于跳出了主流“数据驱动”特征越多越好的传统思路,通过实验证明:特征选择远比计算所有特征更为重要。
相关文章:

基于可解释性特征矩阵与稀疏采样全局特征组合的人体行为识别
论文还未发表,不细说,欢迎讨论。 Title: A New Solution to Skeleton-Based Human Action Recognition via the combination usage of explainable feature extraction and sparse sampling global features. Abstract: With the development of deep …...

OpenCV4(C++)—— 仿射变换、透射变换和极坐标变换
文章目录 一、仿射变换1. getRotationMatrix2D()2. warpAffine() 二、透射变换三、极坐标变换 一、仿射变换 在OpenCV中没有专门用于图像旋转的函数,而是通过图像的仿射变换实现图像的旋转。实现图像的旋转首先需要确定旋转角度和旋转中心,之后确定旋转…...

http.header.Set()与Add()区别;
在Go语言中进行HTTP请求时,http.Header对象表示HTTP请求或响应的头部信息。http.Header是一个map[string][]string类型的结构,用于存储键值对,其中键表示HTTP头字段的名称,值是一个字符串切片,可以存储多个相同名称的头…...

vue-7-vuex
一、Vuex 概述 目标:明确Vuex是什么,应用场景以及优势 1.是什么 Vuex 是一个 Vue 的 状态管理工具,状态就是数据。 大白话:Vuex 是一个插件,可以帮我们管理 Vue 通用的数据 (多组件共享的数据)。例如:购…...

SSO单点登录和OAuth2.0区别
一、概述 SSO是Single Sign On的缩写,OAuth是Open Authority的缩写,这两者都是使用令牌的方式来代替用户密码访问应用。流程上来说他们非常相似,但概念上又十分不同。SSO大家应该比较熟悉,它将登录认证和业务系统分离,…...

【轻松玩转MacOS】基本操作篇
引言 本文是系列的开篇,我将为大家介绍MacOS的基本操作。对于初次接触MacOS的用户来说,掌握这些基本操作是必不可少的。无论是启动和关机,还是使用键盘和鼠标,或者是快捷键的使用,这些基本操作都是你开始使用MacOS的第…...

华为ICT——第三章图像处理基本任务
目录 1:数字图像处理的层次:(处理-分析-理解)顺序不能错: 2:图像处理(图像处理过程): 3:图像分析(特征提取): 4&#x…...

(C++)引用的用法总结
引用(reference)是C极为重要的一部分,本文对其用法进行简单总结。 1. 引用的基本用法 引用的关键字为&,表示取地址的意思,引用变量定义如下: int m 1; int &n m; //定义 cout<<"n:…...

Charles:移动端抓包 / windows客户端 iOS手机 / 手机访问PC本地项目做调试
一、背景描述 1.1、本文需求:移动端进行抓包调试 1.2、理解Charles可以做什么 Charles是一款跨平台的网络代理软件,可以用于捕获和分析网络流量,对HTTP、HTTPS、HTTP/2等协议进行调试和监控。使用Charles可以帮助开发人员进行Web开发、调试…...

【AI】深度学习——人工智能、深度学习与神经网络
文章目录 0.1 如何开发一个AI系统0.2 表示学习(特征处理)0.2.1 传统特征学习特征选择过滤式包裹式 L 1 L_1 L1 正则化 特征抽取监督的特征学习无监督的特征学习 特征工程作用 0.2.2 语义鸿沟0.2.3 表示方式关联 0.2.4 表示学习对比 0.3 深度学习0.3.1 表示学习与深度学习0.3.…...

RK3288:BT656 RN6752调试
这篇文章主要想介绍一下再RK3288平台上面调试BT656 video in的注意事项。以RN6752转接芯片,android10平台为例进行介绍。 目录 1. RK3288 VIDEO INPUT 并口 2. 驱动调试 2.1 RN6752 驱动实现 ①rn6752_g_mbus_config总线相关配置 ②rn6752_querystd配置制式 …...

LLMs 蒸馏, 量化精度, 剪枝 模型优化以用于部署 Model optimizations for deployment
现在,您已经了解了如何调整和对齐大型语言模型以适应您的任务,让我们讨论一下将模型集成到应用程序中需要考虑的事项。 在这个阶段有许多重要的问题需要问。第一组问题与您的LLM在部署中的功能有关。您需要模型生成完成的速度有多快?您有多…...

Milvus踩坑笔记
本文用于记录在学习 Milvus文档时所遇到的一些Bug或报错及解决方法 参考文章: 官方demo:在Dynamic Schema的集合中插入数据 报错1:auto id enabled, id shouldnt in entities[0] 问题描述 此报错出现在Milvus官方在介绍 Dynamic Schema …...

什么是轴电流?轴电流对轴承有什么危害?
根据同步发电机结构及工作原理,由于定子铁芯组合缝、定子硅钢片接缝,定子与转子空气间隙不均匀,轴中心与磁场中心不一致等,机组的主轴不可避免地要在一个不完全对称的磁场中旋转。这样,在轴两端就会产生一个交流电压。…...

react create-react-app v5配置 px2rem (不暴露 eject方式)
环境信息: create-react-app v5 “react”: “^18.2.0” “postcss-plugin-px2rem”: “^0.8.1” 配置步骤: 不暴露 eject 配置自己的webpack: 1.下载react-app-rewired 和 customize-cra-5 npm install react-app-rewired customize-cra…...

.net中用标志位解决socket粘包问题
以下为wpf中, 用标志位"q" 解决粘包问题 using MyFrameWorkWpf.Entities; using System.Collections.ObjectModel; using System.Net; using System.Net.Sockets; using System.Text; using System.Threading; using System.Threading.Tasks; using System.Windows.…...

【Ubuntu】Systemctl 管理 MinIO 服务器的启动和停止
要使用 systemctl 来管理 MinIO 服务器的启动和停止,您需要创建一个 systemd 服务单元文件,以便 systemd 能够启动和停止 MinIO 服务器。下面是一般的步骤: 创建 systemd 服务单元文件: 打开终端并使用文本编辑器创建一个新的 sys…...

《golang设计模式》第二部分·结构型模式-07-代理模式(Proxy)
文章目录 1. 概述1.1 角色1.2 模式类图 2. 代码示例2.1 设计2.2 代码2.3 示例类图 1. 概述 代理(Proxy)是用于控制客户端访问目标对象的占位对象。 需求:在调用接口实现真是主题之前需要一些提前处理。 解决:写一个代理ÿ…...

Jmeter常用线程组设置策略
一、前言 在JMeter压力测试中,我们时常见到的几个场景有:单场景基准测试、单场景并发测试、单场景容量测试、混合场景容量测试、混合场景并发测试以及混合场景稳定性测试 在本篇文章中,我们会用到一些插件,在这边先给大家列出&…...

【Spring】Spring MVC 程序开发
Spring MVC 程序开发 一. 什么是 Spring MVC1. MVC2. Spring、Spring Boot 与 Spring MVC 二. 创建 Spring MVC 项目1. 创建项目2. 用户和程序的映射3. 获取用户请求参数①. 获取单个参数②. 获取多个参数③. 传递对象④. 后端参数重命名(后端参数映射)R…...

如何在企业网站里做好网络安全
在当今数字时代,网站不仅仅是企业宣传和产品展示的平台,更是日常生活和商业活动中不可或缺的一部分。然而,随着网络技术不断发展,网站的安全问题日益凸显。保护网站和用户数据的安全已经成为至关重要的任务,以下是一些…...

windows server 2012 服务器打开系统远程功能
服务器上开启远程功能 进入服务器,选择“添加角色和功能” 需要选择安装的服务器类型,如图所示 然后在服务器池中选择你需要使用的服务器。 选择完成后,在图示列表下勾选“远程桌面服务” 再选择需要安装的功能和角色服务。 选择完成确认内容…...

智能工厂MES系统,终端设备支持手机、PDA、工业平板、PC
一、开源项目简介 源计划智能工厂MES系统(开源版) 功能包括销售管理,仓库管理,生产管理,质量管理,设备管理,条码追溯,财务管理,系统集成,移动端APP。 二、开源协议 使用GPL-3.0开…...

GPT的优势和GPT缺点
GPT,即Generative Pre-trained Transformer,是一种基于人工智能技术的自然语言处理模型。它采用了深度学习算法,可以通过大量的文本数据来学习自然语言的规律,并能够生成流畅、准确的语句。下面我们将探讨GPT技术的优势。 首先&a…...

微信小程序开发缺少中间证书问题(腾讯云、阿里云等做服务器)
项目使用nginx做负载均衡后,不再采用原来直接用jar包的方式直接开启对应端口,所以需要重新从云服务器上下载证书,写入到Nginx读取的证书路径上即可。...

动态代理初步了解
准备案例 需求 模拟某企业用户管理业务,需包含用户登录,用户删除,用户查询功能,并要统计每个功能的耗时。 分析与实现 定义一个UserService表示用户业务接口,规定必须完成用户登录,用户删除,…...

QT国际化
引入 在代码里面写中文就很low,运行时多语言切换是客户端程序都应该具备的。 qt国际化其实就是qt中字符串的字符集编码的设置。当然这个设置不是简单的选择一下什么语言就好,这个需要编程人员来处理的。 通常对于非拉丁字符(主要指latin1字符…...

微信小程序button按钮去除边框去除背景色
button边框 去除button边框 在button上添加plain“true”在css中添加button.avatar-wrapper {background: none}用于去除button背景色在css中添加button.avatar-wrapper[plain]{ border:0 }用于去除button边框...

Neo4j深度学习
Neo4j的简介 Neo4j是用Java实现的开源NoSQL图数据库。从2003年开始开发,2007年正式发布第一版,其源码托管于GitHtb。Neo4j作为图数据库中的代表产品,已经在众多的行业项目中进行了应用,如:网络管理、软件分析、组织和…...

【数据结构C/C++】链式存储与顺序存储结构栈
文章目录 链式存储结构顺序存储结构 下面这篇文章是我大二时候写的比较详细的实现过程,再这篇文章我也会再一次比较简单的再次简述一下链式与顺序存储结构的实现方式。 链式存储结构与顺序存储结构详解 这里我就不使用C再一次实现这两个栈了,有兴趣的也可…...