当前位置: 首页 > news >正文

从零开始的stable diffusion

abc66c28fb1916c76b0e2d52b3829345.gif

stable diffusion真的是横空出世,开启了AIGC的元年。不知你是否有和我一样的困惑,这AI工具好像并不是那么听话?

48af653f2c3daa6b0dbc6c9b83b98baf.png

前言

我们该如何才能用好stable diffusion这个工具呢?AI究竟在stable diffusion中承担了什么样的角色?如何能尽可能快、成本低地得到我们期望的结果?

源于这一系列的疑问,我开始了漫长的论文解读。High-Resolution Image Synthesis with Latent Diffusion Models(地址:https://arxiv.org/abs/2112.10752?spm=ata.21736010.0.0.7d0b28addsl7xQ&file=2112.10752)

当然这论文看的云里雾里的,加篇读了How does Stable Diffusion work?(地址:https://stable-diffusion-art.com/how-stable-diffusion-work/?spm=ata.21736010.0.0.7d0b28addsl7xQ)

先简要概括下,stable diffusion的努力基本是为了2个目的:

  1. 低成本、高效验证。设计了Latent Space

  2. Conditioning Mechanisms。条件控制,如果不能输出我们想要的图片,那这就像Monkey Coding。耗费无限的时间与资源。

这是整个内容里最重要最核心的两个部分。

24987e946e7126efe4446a0de409605a.png

图片生成的几种方式

随着深度神经网络的发展,生成模型已经有了巨大的发展,主流的有以下几种:

  1. 自回归模型(AutoRegressive model):按照像素点生成图像,导致计算成本高。实验效果还不错

  2. 变分自编码器(Variational Autoencoder):Image to Latent, Latent to Image,VAE存在生成图像模糊或者细节问题

  3. 基于流的方法(Glow)

  4. 生成对抗网络(Generative adversarial network):利用生成器(G)与判别器(D)进行博弈,不断让生成的图像与真实的图像在分布上越来越接近。

其中AR与GAN的生成都是在pixel space进行模型训练与推理。

  模型是如何生成图片的?

以一只猫作为案例。当我们想画一只猫的时候,也都是从一个白板开始,框架、细节不断完善。

对于AI来说,一个纯是noise的image就是一个理想的白板,类似下图展示的这样。

83831de615429bf129b807773363e439.png

从图中的流程,我们可以看到推理的过程如下:

  1. 生成一个随机的noise image图片。这个noise取决于Random这个参数。相同的Random生成的noise image是相同的。

  2. 使用noise predictor预测这个图里加了多少noise,生成一个predicted noise。

  3. 使用原始的noise减去predicted noise。

  4. 不断循环2、3,直到我们的执行steps。

最终我们会得到一只猫。

在这个过程中,我们会以下疑问:

  1. 如何得到一个noise predictor?

  2. 怎么控制我们最终能得到一只猫?而不是一只狗或者其他的东西?

在回答这些疑问之前,我先贴一部分公式:

我们定义一个noise predictor:055a36f1cd181eaf5a54cbfa11c2dbe7.png36f237d2bd292bcbc354835cf8510630.png是第 t 个step过程中的noise image,t 表示第t个stop。

  如何得到一个noise predictor?

这是一个训练的过程。过程如下图所示:

264d55cb995db9f609669a741d91e085.png

  1. 选择一张训练用的图片,比如说一张猫

  2. 生成一个随机的noise图片

  3. 将noise图叠加到训练用的图片上,得到一张有一些noise的图片。(这里可以叠加1~T步noise

  4. 训练noise predictor,告诉我们加了多少noise。通过正确的noise答案来调整模型权重。

最终我们能得到一个相对准确的noise-predictor。这是一个U-Net model。在stable-diffusion-model中。

通过这一步,我们最终能得到一个noise encoder与noise decoder。

PS: noise encoder在image2image中会应用到。

以上noise与noise-predictor的过程均在pixel space,那么就会存在巨大的性能问题。比如说一张1024x1024x3的RBG图片对应3,145,728个数字,需要极大的计算资源。在这里stable diffusion定义了一个Latent Space,来解决这个问题。

  Latent Space

Latent Space的提出基于一个理论:Manifold_hypothesis

它假设现实世界中,许多高维数据集实际上位于该高维空间内的低维Latent manifolds。像Pixel Space,就存在很多的难以感知的高频细节,而这些都是在Latent Space中需要压缩掉的信息。

那么基于这个假设,我们先定义一个在RGB域的图片eb59f92b8c684ef93c6a6c491b79218a.png

然后存在一个方法z=varepsilon(x),973c830ec0f4f999bc2b160f848c2dad.jpeg,z是x在latent space的一种表达。

这里有一个因子f=H/h=W/w,通常我们定义5e330f721ffc5ab9e55ef0c486954f18.png,比如说stable-diffusion v1.5训练与推理图片在512x512x3,然后Latent Space的中间表达则是4x64x64,那么我们会有一个decoder D能将图片从Latent Space中解码出来。

f8bdad0f3ac6280c8e0d99aebb61ae97.png在这个过程中我们期望aecc1153b8dcbf658582d53c5f0a935d.png,这俩图片无限接近。

整个过程如下图所示:

55babbd97d73b27c1150fde01461db78.png

而执行这个过程的就是我们的Variational Autoencoder,也就是VAE。

那么VAE该怎么训练呢?我们需要一个衡量生成图像与训练图像之间的一个距离指标。

也就是3ac131972fb030699e2b8c0ca167b4f7.jpeg

细节就不关心了,但这个指标可以用来衡量VAE模型的还原程度。训练过程与noise encoder和noise-predictor非常接近。

贴一个stable diffusion在FID指标上,与其他方法的对比。下面的表格来自于无条件图片生成。基本就是比较Latent Space是否有丢失重要信息。

578f685174c2d516164b882c3d1e6cc9.png

  • 为什么Latent Space是可行的?

你可能在想,为什么VAE可以把一张图片压缩到更小的latent space,并且可以不丢失信息。

其实和人对图片的理解是一样的,自然的、优秀的图片都不是随机的,他们有高度的规则,比如说脸上会有眼睛、鼻子。一只狗会有4条腿和一个规则的形状。

图像的高维性是人为的,而自然的图像可以很容易地压缩为更小的空间中而不丢失任何信息。

可能说我们修改了一张图片的很多难以感知的细节,比如说隐藏水印,微小的亮度、对比度的修改,但修改后还是同样的图像吗?我们只能说它表达的东西还是一样的。并没有丢失任何信息。

  结合Latent Space与noise predictor的图像生成过程

  1. 生成一个随机的latent space matrix,也可以叫做latent representation。一种中间表达

  2. noise-predictor预测这个latent representation的noise.并生成一个latent space noise

  3. latent representation减去latent space noise

  4. 重复2~3,直到step结束

  5. 通过VAE的decoder将latent representation生成最终的图片

直到目前为止,都还没有条件控制的部分。按这个过程,我们最终只会得到一个随机的图片。

c71694a4c68f71cd34d033fbe87c045f.png

条件控制

非常关键,没有条件控制,我们最终只能不断地进行Monkey Coding,得到源源不断的随机图片。

相信你在上面的图片生成的过程中,已经感知到一个问题了,如果只是从一堆noise中去掉noise,那最后得到的为什么是有信息的图片,而不是一堆noise呢?

noise-predictor在训练的时候,其实就是基于已经成像的图片去预测noise,那么它预测的noise基本都来自于有图像信息的训练数据。

在这个denoise的过程中,noise会被附加上各种各样的图像信息。

怎么控制noise-predictor去选择哪些训练数据去预测noise,就是条件控制的核心要素。

这里我们以tex2img为案例讨论。

  Text Conditioning

下面的流程图,展示了一个prompt如何处理,并提供给noise predictor。

5e4546b9206582e6705a9c72570100ce.png


  • Tokenizer

从图中可以看到,我们的每一个word,都会被tokenized。stable diffusion v1.5使用的openai ViT-L/14 Clip模型来进行这个过程。

tokenized将自然语言转成计算机可理解的数字(NLP),它只能将words转成token。比如说dreambeach会被CLIP模型拆分成dreambeach。一个word,并不意味着一个token。同时dreambeach也不等同于dream<space>beach,stable diffusion model目前被限制只能使用75个tokens来进行prompt,并不等同于75个word。

  • Embedding


同样,这也是使用的openai ViT-L/14 Clip model. Embedding是一个768长度的向量。每一个token都会被转成一个768长度的向量,如上案例,我们最后会得到一个4x768的矩阵。

为什么我们需要embedding呢?

比如说我们输入了man,但这是不是同时可以意味着gentlemanguysportsmanboy。他们可能说在向量空间中,与man的距离由近而远。而你不一定非要一个完全准确无误的man。通过embedding的向量,我们可以决定究竟取多近的信息来生成图片。对应stable diffusion的参数就是(Classifier-Free Guidance scale)CFG。相当于用一个scale去放大距离,因此scale越大,对应的能获取的信息越少,就会越遵循prompt。而scale越小,则越容易获取到关联小,甚至无关的信息。

如何去控制embedding?

我们经常会遇到stable diffusion无法准确绘制出我们想要的内容。那么这里我们发现了第一种条件控制的方式:textual inversion

将我们想要的token用一个全新的别名定义,这个别名对应一个准确的token。那么就能准确无误地使用对应的embedding生成图片。

这里的embedding可以是新的对象,也可以是其他已存在的对象。

比如说我们用一个玩具猫训练到CLIP模型中,并定义其Tokenizer对应的word,同时微调stable diffusion的模型。而90ced4a02b6d15f373b421079c9ec373.jpeg对应toy cat就能产生如下的效果。

988ade378a73d03010f0d3564d4ef6b4.png

感觉有点像Lora的思路,具体还得调研下lora。

text transformer

在得到embedding之后,通过text transformer输入给noise-predictor

transformer可以控制多种条件,如class labels、image、depth map等。

Cross-attention

具体cross-attention是什么我也不是很清楚。但这里有一个案例可以说明:

比如说我们使用prompt "A man with blue eyes"。虽然这里是两个token,但stable diffusion会把这两个单词一起成对。

这样就能保证生成一个蓝色眼睛的男人。而不是一个蓝色袜子或者其他蓝色信息的男人。

(cross-attention between the prompt and the image)

LoRA models modify the cross-attention module to change styles。后面在研究Lora,这里把原话摘到这。

感觉更像是存在blueeyes,然后有一个集合同时满足blueeye。去取这个交叉的集合。问题:对应的embedding是不是不一样的?该如何区分blue planet in eyeblue eye in planet的区别?感觉这应该是NLP的领域了。

  • 总结下tex2img的过程

  1. stable diffusion生成一个随机的latent space matrix。这个由Random决定,如果Random不变,则这个latent space matrix不变。

  2. 通过noise-predictor,将noisy image与text prompt作为入参,预测predicted noise in latent space

  3. latent noise减去predicted noise。将其作为新的latent noise

  4. 不断重复2~3执行step次。比如说step=20

  5. 最终,通过VAE的decoder将latent representation生成最终的图片

这个时候就可以贴Stable diffusion论文中的一张图了

d1c13cf1ed21661bb9c422773a565812.png

手撕一下公式:

左上角的f151536100c3d5bbcf07b4e5a0e4c569.png定义为一张RGB像素空间的图。经过8d8d8520a2e12bf2b2d0f6c25ed3c85d.png的变化,生成73c5887e07673264fdc4f5f9efd5b849.jpeg这个latent space representation。再经过一系列的noise encoder,得到29505082e6ddea09dffab1447b5cab2f.png,T表示step。

而这个过程则是img2img的input。如果是img2img,那么初始的noise latent representation就是这个不断加noise之后的8a51dfd49d526aff222aab248166a53f.png

如果是tex2img,初始的noise latent representation则是直接random出来的。

再从右下角的a107e1f36a2cb5f565f232de1f41127b.jpeg4ee4170ba4880fb5673cff70eae1bb58.jpeg开始,y 表示多样的控制条件的入参,如text prompts。通过a8ea9e71822f0dab045509f198f45017.png(domain specific encoder)将 y 转为intermediate representation(一种中间表达)。而840c730938196cde0618c08276286ecb.jpeg70ff9786b6bb84051002cb3723b26e88.png将经过cross-attention layer的实现:

11387359c8332ae5032b548f53ff8b91.png

具体的细节说实话没看懂,而这一部分在controlnet中也有解释,打算从controlnet的部分进行理解。

图中cross-attention的部分可以很清晰的看到是一个由大到小,又由小到大的过程,在controlnet的图中有解释:

SD Encoder Block_1(64x64) -> SD Encoder Block_2(32x32) -> SD Encoder Block_3(16x16) -> SD Encoder(Block_4 8x8) -> SD Middle(Block 8x8) -> SD Decoder(Block_4 8x8) -> SD Decoder Block_3(16x16) -> SD Decoder Block_2(32x32) -> SD Decoder Blocker_1(64x64)

是一个从64x64 -> 8x8 -> 64x64的过程,具体为啥,得等我撕完controlnet的论文。回到过程图中,我们可以看到denoising step则是在Latent Space的左下角进行了一个循环,这里与上面的流程一直。

最终通过VAE的decoder D,输出图片641282945b46642af46c6ca83e614c72.png

最终的公式如下:

e6802ac5e5c689782238e78b556a3b61.png

结合上面的图看,基本还是比较清晰的,不过这个:=和8810ba13607df406e1e7ba7800e6ce35.png代表了啥就不是很清楚了。结合python代码看流程更清晰~删掉了部分代码,只留下了关键的调用。

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet"
)
scheduler = LMSDiscreteScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler"
)
prompt = ["a photograph of an astronaut riding a horse"]
generator = torch.manual_seed(32)
text_input = tokenizer(prompt,padding="max_length",max_length=tokenizer.model_max_length,truncation=True,return_tensors="pt",
)
with torch.no_grad():text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
latents = torch.randn((batch_size, unet.in_channels, height // 8, width // 8), generator=generator
)
scheduler.set_timesteps(num_inference_steps)
latents = latents * scheduler.init_noise_sigmafor t in tqdm(scheduler.timesteps):latent_model_input = torch.cat([latents] * 2)latent_model_input = scheduler.scale_model_input(latent_model_input, t)with torch.no_grad():noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).samplenoise_pred_uncond, noise_pred_text = noise_pred.chunk(2)noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)latents = scheduler.step(noise_pred, t, latents).prev_samplelatents = 1 / 0.18215 * latentswith torch.no_grad():image = vae.decode(latents).sample

还是很贴合图中流程的。
在代码中有一个Scheduler,其实就是noising的执行器,它主要控制每一步noising的强度。
由Scheduler不断加噪,然后noise predictor进行预测减噪。
具体可以看Stable Diffusion Samplers: A Comprehensive Guide(地址:https://stable-diffusion-art.com/samplers/)

  Img2Img

这个其实在上面的流程图中已经解释了。这里把步骤列一下:

  1. 输入的image,通过VAE的encoder变成latent space representation

  2. 往里面加noise,总共加T个noise,noise的强度由Denoising strength控制。noise其实没有循环加的过程,就是不断叠同一个noise T次,所以可以一次计算完成。

  3. noisy image和text prompt作为输入,由noise predictor U-Net预测一个新的noise

  4. noisy image减去预测的noise

  5. 重复3~4 step次

  6. 通过VAE的decoder将latent representation转变成image


  Inpainting

基于上面的原理,Inpainting就很简单了,noise只加到inpaint的部分。其他和Img2Img一样。相当于只生成inpaint的部分。所以我们也经常发现inpaint的边缘经常无法非常平滑~如果能接受图片的细微变化,可以调低Denoising strength,将inpaint的结果,再进行一次img2img

05a8f69c621d3aa6701441193db2914e.png

Stable Diffusion v1 vs v2

v2开始CLIP的部分用了OpenClip。导致生成的控制变得非常的难。OpenAI的CLIP虽然训练集更小,参数也更少。(OpenClip是ViT-L/14 CLIP的5倍大小)。但似乎ViT-L/14的训练集更好一些,有更多针对艺术和名人照片的部分,所以输出的结果通常会更好。导致v2基本没用起来。不过现在没事了,SDXL横空出世。

e74cd782128cd5bcc98941f1cb299144.png

SDXL model

SDXL模型的参数达到了66亿,而v1.5只有9.8亿

153341f695423d6a53a8e00401b964bc.png

由一个Base model和Refiner model组成。Base model负责生成,而Refiner则负责加细节完善。可以只运行Base model。但类似人脸眼睛模糊之类的问题还是需要Refiner解决。

SDXL的主要变动:

  1. text encoder组合了OpenClip和ViT-G/14。毕竟OpenClip是可训练的。

  2. 训练用的图片可以小于256x256,增加了39%的训练集

  3. U-Net的部分比v1.5大了3倍

  4. 默认输出就是1024x1024

展示下对比效果:

9fa790d44435aa70c1e37e1c247e94dd.png

从目前来看,有朝一日SDXL迟早替代v1.5。从效果来说v2.1确实被时代淘汰了。

a8e1d221e150f4b654a3dc97fa36ae5f.png

Stable Diffusion的一些常见问题

  脸部细节不足,比如说眼部模糊

可以通过VAE files进行修复~有点像SDXL的Refiner

  多指、少指

这个看起来是一个无解的问题。Andrew给出的建议是加prompt比如说beautiful handsdetailed fingers,期望其中有部分图片满足要求。或者用inpaint。反复重新生成手部。(这个时候可以用相同的prompt。)

5758b6c25373e67e4d7533e1e31c572a.png

团队介绍

我们是淘天集团-场景智能技术团队,作为一支专注于通过AI和3D技术驱动商业创新的技术团队, 依托大淘宝丰富的业务形态和海量的用户、数据, 致力于为消费者提供创新的场景化导购体验, 为商家提供高效的场景化内容创作工具, 为淘宝打造围绕家的场景的第一消费入口。我们不断探索并实践新的技术, 通过持续的技术创新和突破,创新用户导购体验, 提升商家内容生产力, 让用户享受更好的消费体验, 让商家更高效、低成本地经营。

¤ 拓展阅读 ¤

3DXR技术 | 终端技术 | 音视频技术

服务端技术 | 技术质量 | 数据算法

相关文章:

从零开始的stable diffusion

stable diffusion真的是横空出世&#xff0c;开启了AIGC的元年。不知你是否有和我一样的困惑&#xff0c;这AI工具好像并不是那么听话&#xff1f; 前言 我们该如何才能用好stable diffusion这个工具呢&#xff1f;AI究竟在stable diffusion中承担了什么样的角色&#xff1f;如…...

【Qt之QString】数值与进制字符串间的转换详解

在Qt中&#xff0c;可以使用QString类提供的一些方法来进行数值和进制字符串之间的转换。 以下是示例&#xff1a; 1. 将整数转换为进制字符串&#xff1a; QString类的number静态方法用于将整数转换为字符串表示&#xff0c;并且可以指定转换的进制。方法的定义如下&#x…...

Pytest单元测试框架 —— Pytest+Allure+Jenkins的应用

一、简介 pytestallurejenkins进行接口测试、生成测试报告、结合jenkins进行集成。 pytest是python的一种单元测试框架&#xff0c;与python自带的unittest测试框架类似&#xff0c;但是比unittest框架使用起来更简洁&#xff0c;效率更高 allure-pytest是python的一个第三方…...

科普向丨语音芯片烧录工艺的要求

语音芯片烧录工艺要求烧录精度、速度、内存容量、电源稳定性、兼容性和数据安全性。这些要素需优化和控制以保证生产高效、稳定、安全并烧录出高质量的语音芯片。不同厂家生产的语音芯片在烧录工艺上存在差异&#xff0c;需相应设计和研发以实现兼容。 一、烧录精度 语音芯片烧…...

: 依赖: qtbase5-dev (= 5.12.8+dfsg-0ubuntu2.1) 但是它将不会被安装 或

有一些软件包无法被安装。如果您用的是 unstable 发行版&#xff0c;这也许是因为系统无法达到您要求的状态造成的。E: 无法修正错误&#xff0c;因为您要求某些软件包保持现状&#xff0c;就是它们破坏了软件包间的依赖关系。_unstable发行版-CSDN博客 E: 无法修正错误&#x…...

Unity中Camera类实现坐标系转换的示例

1. 用于将世界坐标系转换为屏幕坐标系 using System.Collections; using System.Collections.Generic; using UnityEngine;public class Camer_Class_WorldTo : MonoBehaviour {// 用于将世界坐标系转换为屏幕坐标系//本脚本将完成一个案例实现 小球从远处过来Transform Sta…...

vue-按键修饰符

按键修饰符&#xff1a;主要用于监听键盘上的按钮被按下时&#xff0c;可触发对应的事件函数 v-on:keyup.修饰符.修饰符】、 .enter .tab .delete(针对delete和backspace两个按键) .esc .space .esc .space .up .down .left .right 系统修饰符必须按下才触发 .ctrl .alt .shift…...

[初始java]——java为什么这么火,java如何实现跨平台、什么是JDK/JRE/JVM

java的名言&#xff1a; ”一次编译、到处运行“ 一、编译语言与解释语言 编译&#xff1a; 是将整份源代码转换成机器码再进行下面的操作&#xff0c;最终形成可执行文件 解释&#xff1a; 是将源代码逐行转换成机器码并直接执行的过程&#xff0c;不需要生成目标文件 jav…...

R语言手动绘制NHANSE数据基线表并聊聊NHANSE数据制作亚组交互效应表的问题(P for interaction)

美国国家健康与营养调查&#xff08; NHANES, National Health and Nutrition Examination Survey&#xff09;是一项基于人群的横断面调查&#xff0c;旨在收集有关美国家庭人口健康和营养的信息。 地址为&#xff1a;https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 在既往的…...

C++引用(起别名)

0.引用的概念 引用不是新定义一个变量&#xff0c;而是给已存在变量取了一个别名&#xff0c;从语法的角度来说编译器不会为引用变量开辟内存空间&#xff0c;它和它引用的变量共用同一块内存空间。比如说你的名字和外号指的都是你本人。 void Test() {int a 10;int& ra …...

Ubuntu:VS Code IDE安装ESP-IDF【保姆级】(草稿)

物联网开发学习笔记——目录索引 Visual Studio Code&#xff08;简称“VS Code”&#xff09;是Microsoft向开发者们提供的一款真正的跨平台编辑器。 参考&#xff1a; VS Code官网&#xff1a;Visual Studio Code - Code Editing. Redefined 乐鑫官网&#xff1a;ESP-IDF …...

子序列(All in All, UVa 10340)rust解法

输入两个字符串s和t&#xff0c;判断是否可以从t中删除0个或多个字符&#xff08;其他字符顺序不变&#xff09;&#xff0c;得到字符串s。例如&#xff0c;abcde可以得到bce&#xff0c;但无法得到dc。 解法 use std::io;fn main(){let mut buf String::new();io::stdin().…...

AI时代,当项目经理遇到ChatGPT,插上腾飞的翅膀!

文章目录 一、 ChatGPT 在项目管理中的应用1. 任务分配和跟踪2. 风险管理3. 沟通和协作 二、 ChatGPT 在项目管理中的优势1. 高效性2. 可靠性3. 灵活性 三、 ChatGPT 在项目管理中的应用场景1. 智能会议2. 智能文档3. 智能报告 结语AI时代项目经理成长之道&#xff1a;ChatGPT让…...

Springboot项目中加载Groovy脚本并调用其内部方代码实现

前言 项目中部署到多个煤矿的上&#xff0c;每一种煤矿的情况都相同&#xff0c;涉及到支架的算法得写好几套&#xff0c;于是想到用脚本实现差异变化多的算法&#xff01;一开始想到用java调用js脚本去实现&#xff0c;因为这个不需要引入格外的包&#xff0c;js对我来说也没…...

为什么要做数据可视化

在当今信息爆炸的时代&#xff0c;数据已成为个人和企业最宝贵的资产之一。然而&#xff0c;仅仅拥有大量的数据并不足以支持明智的决策。数据可视化&#xff0c;作为一种将数据转化为图形形式的技术和方法&#xff0c;可以帮助我们更好地理解和分析数据&#xff0c;从而更准确…...

0基础学习VR全景平台篇 第108篇:全景图细节处理(下,航拍)

上课&#xff01;全体起立~ 大家好&#xff0c;欢迎观看蛙色官方系列全景摄影课程&#xff01; &#xff08;调色前图库&#xff09; &#xff08;原图-大图&#xff09; 一、导入文件 单击右下角导入按钮&#xff0c;选择航拍图片所在文件夹&#xff0c;选择图片&#xff0…...

linux查看文件内容命令more/less/cat/head/tail/grep

1.浏览全部内容more/less 文件&#xff1a; more&#xff1a;可以查看文件第一屏的内容&#xff0c;同时左下角有一个显示内容占全部文件内容的百分比&#xff0c;空格键会显示下一屏的内容&#xff0c;直到文件末尾 [rootmaster data]# more file1less&#xff1a;相较于mor…...

VBA窗体跟随活动单元格【简易版】

本篇博客与以往的风格不同&#xff0c;先上图再讲解。 这个效果是不是很酷&#xff0c;VBA窗体&#xff08;即UserForm&#xff0c;下文中简称为窗体&#xff09;可以实现很多功能&#xff0c;例如&#xff1a;用户输入数据&#xff0c;提供选项等等。如本博客标题标注&#…...

epiiAdmin框架注意事项

1&#xff0c;epiiAdmin文档地址&#xff1a; 简介/安装 EpiiAdmin中文文档 看云 2&#xff0c;项目性想新建模块 composer.json文件——autoload选项——psr-4下增加模块名称&#xff0c;然后执行composer update命令。 "autoload": {"psr-4": {"…...

数据仓库与ETL

什么是数据仓库 一种用于存储和管理数据的系统&#xff0c;提供一种统一方式&#xff0c;将不同来源、不同方式、不同时间的数据集成在一起。 数据仓库结构 主题域&#xff1a;一个特定领域的数据集&#xff0c;比如营销、销售、客户、库存等。 维度&#xff1a;定义数据的不…...

Centos7安装Gitlab--gitlab--ee版

1 安装必要依赖 2 配置GitLab软件源镜像 3 下载安装GitLab 4 查看管理员root用户默认密码 5 登录GitLab 6 修改密码 7 gitlab相关命令 1 安装必要依赖 sudo yum install -y curl policycoreutils-python openssh-server perl sudo systemctl enable sshd sudo systemctl sta…...

主题教育问题清单及整改措施2023年-主题教育对照六个方面个人剖析材料

无论前方路途多么坎坷&#xff0c;都要保持内心的坚定和勇敢。生活中没有什么不可战胜的困难&#xff0c;只有我们是否愿意去面对和克服。要相信自己的能力&#xff0c;相信自己拥有足够的智慧和力量去应对一切挑战 每一次的努力都不会白费&#xff0c;每一次的奋斗都是在为自己…...

php新手实战:自定义书源下载api

网上有很多第三方小说网站提供小说下载&#xff0c;而下载的过程无非就是搜索书籍&#xff0c;然后找到下载链接点击下载即可。只是类似这种“良心”的小说网站实在是太少。大多数仅支持在线阅读。而如今&#xff0c;我却要利用这种为数不多的“良心”小说站点提供的书源来作为…...

数据结构 - 5(二叉树7000字详解)

一&#xff1a;二叉树的基本概念 1.1树形结构 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。 注意&am…...

xshell使用方法(超详细)

一、安装 下载最新版安装即可&#xff0c;不需要做任何配置。 安装完成后输入账号名和邮箱&#xff0c;确认后邮箱会收到一条确认邮件&#xff0c;将里面的链接点开即可免费使用&#xff08;仅安装后会出现&#xff0c;认证后以后再打开不需要重复操作&#xff0c;如果重新安…...

【数据库系统概论】第三章关系数据库标准语言SQL

选择题会考&#xff1a; 1.数据查询&#xff1a; SELECT&#xff1a;用于选择需要查询的列和行。 FROM&#xff1a;用于指定要查询的表。 WHERE&#xff1a;用于指定查询条件。 GROUP BY&#xff1a;用于按照指定的列对结果进行分组。 HAVING&#xff1a;用于指定分组条件…...

云计算是什么?学习云计算能做什么工作?

很多人经常会问云计算是什么&#xff1f;云计算能干什么&#xff1f;学习云计算能做什么工作&#xff1f;其实我们有很多人并不知道云计算是什么&#xff0c;小知今天来给大家讲讲学习云计算能做什么。 中国的云计算行业目前正处于快速发展阶段&#xff0c;随着互联网和数字化…...

ES6 -- 模块化(CommonJS、AMD、ES Module)

模块模式 将代码拆分成独立的块&#xff0c;然后再将这些块连接起来可以通过模块模式来实现。这种模式背后的思想很简单&#xff1a;把逻辑分块&#xff0c;各自封装&#xff0c;相互独立&#xff0c;每个块自行决定对外暴露什么&#xff0c;同时自行决定引入执行哪些外部代码…...

c# xml 参数读取读取的简单使用

完整使用之测试参数的读取&#xff08;xml&#xff09; 保存一个xml文档&#xff08;如果没有就会生成一个默认的 里面的参数用的是我们默认设置的&#xff09;&#xff0c;之后每次更改里面的某项&#xff0c;然后保存 类似于重新刷新一遍。 这里所用的xml测试参数前面需要加…...

gym原来是这样用的

今天down了一个深度强化学习的程序&#xff0c;但是试来试去总是跑不成功&#xff0c;第一句就出问题了 env gym.make("clusterEnv-v0").unwrapped总是报没有该环境&#xff0c;思想半天&#xff0c;然后发现这是自己写的环境&#xff0c;需要到gym中去注册才能使用…...

wordpress分类目录小工具/seo关键词优化推广价格

目的 本次实现的目的是&#xff1a;在微信公众号项目中&#xff0c;可能在每次访问页面的时候需要带上openid或者授权&#xff0c;查数据库太耗性能、多次多个地方去调授权接口也不是最佳的方案&#xff0c;如果能利用拦截器拦截到每次请求访问后台&#xff0c;这个时候在拦截…...

成都营销型网站建设/怎么搜索关键词

上一篇&#xff0c;我们实现了一个基本的StrokeTextView&#xff0c;能支持各种Gravity&#xff0c;本篇&#xff0c;我们就要在上一篇的基础上进一步优化&#xff0c;让StrokeTextView可以支持各种Padding&#xff0c;而它的margin我们不需要关心&#xff0c;因为margin是由父…...

目录网站开发/芜湖seo

jspai方式支付&#xff0c;页面一直报【签名验证失败】&#xff0c;签名验证过了没有问题&#xff0c;有一点错误就报【缺少参数 total_fee】&#xff0c;这是误报&#xff0c;具体原因有很多。 原因是因为我在前台这样写的&#xff1a; package: "prepay_id" data.…...

荆州网站建设公司/360指数在线查询

webpack系列文章 webpack由浅入深——&#xff08;webpack基础配置&#xff09;webpack由浅入深——&#xff08;webpack优化配置&#xff09;webpack由浅入深——&#xff08;tapable&#xff09;webpack由浅入深——&#xff08;ast&#xff09;webpack由浅入深——&#xf…...

成都高端网站建设公司/网站建设优化哪家公司好

流处理技术在大大小小的公司中越来越受欢迎,因为它为许多已建立的用例(如数据分析,ETL和事务应用程序)提供了很好的解决方案,同时发展了很多新的应用程序和商机。那么,为什么有状态流处理变得如此受欢迎?我们首先回顾传统的数据应用程序架构并指出它们的局限性。接下来,…...

企业做网站的好处千秋网络/内容营销策略有哪些

//创建一个Promise实例&#xff0c;获取数据。并把数据传递给处理函数resolve和reject。需要注意的是Promise在声明的时候就执行了。var getUserListnew Promise(function(resolve,reject){$.ajax({type:"get",url:"http://vueshop.glbuys.com/api/home/index/s…...