当前位置: 首页 > news >正文

【Python数据分析工具】

文章目录

    • 概要
    • 整体架构流程
    • 技术名词解释

概要

数据分析是一种通过收集、处理、分析和解释大量数据,以发现有价值信息、洞察趋势、制定决策并解决问题的过程。在现代科技和互联网的推动下,数据分析变得日益重要。它不仅仅是对数字和图表的简单解释,更是深入了解数据背后故事的手段。

首先,数据分析始于数据的收集。通过各种来源,如传感器、移动设备、社交媒体、在线交易等,海量数据被获取并储存。这些数据可能包括用户行为、市场趋势、生产过程等各个领域的信息。

其次,数据分析涉及数据的处理与清洗。原始数据通常杂乱无章,可能包含错误、缺失或不一致的部分。数据分析师需要进行数据清洗,包括去除异常值、填充缺失数据、标准化数据格式,以确保数据的质量和一致性。

然后,数据分析依托统计学和数学方法,运用数据挖掘、机器学习等技术,对数据进行探索和分析。这可以包括描述性统计、推论性统计、聚类分析、回归分析等。通过这些方法,数据分析师可以识别模式、预测趋势、发现关联,为业务决策提供支持。

最后,数据分析的结果需要以可视化的方式呈现。图表、图像、地图等可视化手段能够更直观地传达分析结果,帮助非技术人员理解复杂的数据。这样的可视化不仅使分析结果更易于传达,也能够帮助决策者更好地理解数据的含义。

总的来说,数据分析是一个多层次、多阶段的过程,涵盖数据的获取、清洗、分析和可视化。它帮助组织和企业从庞大的数据中提取有用信息,指导战略决策、优化业务流程、提高效率,是现代社会决策制定和创新发展的重要支撑。

整体架构流程

数据分析是一个系统性的过程,旨在从数据中提取有价值的信息,指导决策和预测未来趋势。在数据分析中,常用的Python库提供了强大的工具,使得数据分析变得更加高效和便捷。以下是一个详细的数据分析示例,包括数据导入、探索性数据分析(EDA)、数据可视化和建立模型的步骤。

步骤1:导入数据

首先,我们需要导入销售数据。我们假设数据保存在一个名为sales.csv的CSV文件中,包含销售日期、销售额和产品类别等信息。

import pandas as pd# 导入数据
data = pd.read_csv('sales.csv')

步骤2:探索性数据分析(EDA)

接下来,让我们进行一些基本的数据探索,了解数据的特征和分布。

# 查看前5行数据
print(data.head())# 统计摘要
summary = data.describe()
print(summary)# 绘制销售额的直方图
import matplotlib.pyplot as plt
plt.hist(data['Sales'], bins=20)
plt.xlabel('Sales')
plt.ylabel('Frequency')
plt.title('Histogram of Sales')
plt.show()

步骤3:数据可视化

import seaborn as snssns.boxplot(x='Category', y='Sales', data=data)
plt.xlabel('Category')
plt.ylabel('Sales')
plt.title('Boxplot of Sales by Category')
plt.show()

步骤4:建立模型

在这个示例中,我们使用线性回归模型来预测销售额与其他变量之间的关系。

from sklearn.linear_model import LinearRegression# 创建线性回归模型
model = LinearRegression()# 定义自变量和因变量
X = data[['Category', 'Date']]
y = data['Sales']# 拟合模型
model.fit(X, y)

这就是一个完整的数据分析示例,包括了数据导入、探索性数据分析、数据可视化和建立模型的步骤。在实际的数据分析项目中,你可以根据需要选择不同的数据分析方法和模型,并深入挖掘数据背后的规律,为决策提供有力支持。
在这里插入图片描述

技术名词解释

当进行Python数据分析时,有几个关键的库是不可或缺的。下面将详细介绍NumPy、Pandas、Matplotlib、Seaborn和Scikit-Learn的用法和功能。

  1. NumPy

简介: 首先,NumPy(Numerical Python)是Python的数值计算库,为数据科学提供了强大的数学和统计功能。它的多维数组对象和数学函数为数据的高效处理提供了基础,包括均值、标准差等统计计算。
NumPy是大部分Python科学计算的基础,它具有以下功能:

(1) 快速高效的多维数据对象ndarray。

(2) 高性能科学计算和数据分析的基础包。

(3) 多维数组(矩阵)具有矢量运算能力,快速、节省空间。

(4) 矩阵运算。无需循环,可完成类似Matlab中的矢量运算。

(5) 线性代数、随机数生成以及傅里叶变换功能。

使用示例:

import numpy as np# 创建一个NumPy数组
data = np.array([1, 2, 3, 4, 5])# 计算均值和标准差
mean = np.mean(data)
std_dev = np.std(data)
  1. Pandas

简介: 其次,Pandas是一款灵活、高性能的数据分析工具,它引入了两种数据结构:Series(一维数据)和DataFrame(二维数据表)。Pandas可以轻松处理数据的导入、清洗、转换和分析,通过describe函数等能够生成数据的摘要统计信息。
Pandas作为强大而高效的数据分析环境中的重要因素之一,具有以下特点:
  (1) 一个快速高效的DataFrame对象,具有默认和自定义的索引。

(2) 用于在内存数据结构和不同文件格式中读取和写入数据,比如CSV和文本文件、 Excel文件及SQL数据库。

(3) 智能数据对齐和缺失数据的集成处理。

(4) 基于标签的切片、花式索引和大数据集的子集。

(5) 可以删除或插入来自数据结构的列。

(6) 按数据分组进行聚合和转换。

(7) 高性能的数据合并和连接。

(8) 时间序列功能。

使用示例:

import pandas as pd# 创建一个DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35]}
df = pd.DataFrame(data)# 查看数据摘要
summary = df.describe()
  1. Matplotlib 和 Seaborn

简介:数据的可视化对于理解数据分布和趋势至关重要。Matplotlib是一个强大的绘图库,而Seaborn则是在Matplotlib基础上提供更高级接口的库。它们可以生成各种图表,包括散点图、箱线图等,帮助数据科学家更加直观地理解数据。
Matplotlib是一个用在 Python中绘制数组的2D 图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中最出色的绘图库。
Matplotlib主要用纯Python语言进行编写,但它大量使用NumPy 和其他扩展代码,即使对大型数组也能提供良好的性能。
Seaborn是Python中基于Matplotlib的数据可视化工具,它提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。

使用示例:

import matplotlib.pyplot as plt
import seaborn as sns# 创建一个散点图
plt.scatter(df['Age'], df['Income'])
plt.xlabel('Age')
plt.ylabel('Income')
plt.title('Scatter Plot of Age vs. Income')
plt.show()
  1. Scikit-Learn

简介: 最后,Scikit-Learn是Python中用于机器学习的库,提供了多种机器学习算法,包括回归、分类和聚类。它简化了机器学习模型的建立和评估过程,是数据科学家进行预测建模的得力工具。

使用示例:

from sklearn.linear_model import LinearRegression# 创建线性回归模型
model = LinearRegression()# 定义自变量X和因变量y(假设已有数据)
X = ...
y = ...# 拟合模型
model.fit(X, y)# 预测
predictions = model.predict(X_test)

以上这些库在数据分析和机器学习领域被广泛使用,它们提供了丰富的功能和灵活性,使得数据分析工作更加高效和便捷。

`

相关文章:

【Python数据分析工具】

文章目录 概要整体架构流程技术名词解释 概要 数据分析是一种通过收集、处理、分析和解释大量数据,以发现有价值信息、洞察趋势、制定决策并解决问题的过程。在现代科技和互联网的推动下,数据分析变得日益重要。它不仅仅是对数字和图表的简单解释&#…...

Python数据挖掘入门进阶与实用案例:自动售货机销售数据分析与应用

文章目录 写在前面01 案例背景02 分析目标03 分析过程04 数据预处理1. 清洗数据2.属性选择3.属性规约 05 销售数据可视化分析1.销售额和自动售货机数量的关系2.订单数量和自动售货机数量的关系3.畅销和滞销商品4.自动售货机的销售情况5.订单支付方式占比6.各消费时段的订单用户…...

2.3_9吸烟者问题

...

位运算基础知识及性质(精简总结)

目录 简介 基础知识 常用性质 简介 程计算机中的数在内存中都是以二进制形式进行存储的,用位运算就是直接对整数在内存中的二进制位进行操作,因此其执行效率非常高,在程序中尽量使用位运算进行操作,这会大大提高程序的性能。 基…...

阵列信号处理_对比常规波束形成法(CBF)和Capon算法

空间谱估计 利用电磁波信号来获取目标或信源相对天线阵列的角度信息的方式,也称测向、波达方向估计(DOA)。主要应用于雷达、通信、电子对抗和侦察等领域。 发展 常规波束形成(CBF)。本质是时域傅里叶变换在空域直接…...

通过循环生成多个echarts图表并实现自适应

不推荐使用grid布局&#xff0c;不清楚为什么左边一列的不会自适应&#xff0c;换成flex布局就可以了 主要方法借助中的getInstanceByDom方法 完整代码&#xff1a; <template><div class"statis"><div class"content" ><!-- v-for …...

MySQL——六、库表操作(下篇)

MySQL 一、INSERT语句二、REPLACE语句三、UPDATE语句四、delete和TRUNCATE语句五、MySQL用户授权1、密码策略2、用户授权和撤销授权 一、INSERT语句 #在表里面插入数据&#xff1a;默认情况下&#xff0c;一次插入操作只插入一行 方式1&#xff1a; INSERT [INTO] 表名 [(colu…...

自动化办公篇之python批量改名

#批量命名 import xlwings as xw app xw.App(visibleFalse,add_bookFalse) workbook app.books.open("测试表.xlsx") for sheet in workbook.sheets:sheet.namesheet.name.replace("彩印之","银河") workbook.save() app.quit()...

Android MediaCodec将h264实时视频流数据解码为yuv,并转换yuv的颜色格式为nv21

初始化mediacodec private MediaCodec mediaCodec;private ByteBuffer[] inputBuffers;private void initMediaCodec(Surface surface) {try {Log.d(TAG, "onGetNetVideoData: ");//创建解码器 H264的Type为 AACmediaCodec MediaCodec.createDecoderByType("v…...

Postgresql SQL 字段拼接

本文介绍Postgresql 数据库sql字段拼接的方法。 1.使用字符串连接函数 select pkey || - || vname as "项目-版本" from test_jira_project_verison; 2.使用字符串连接操作符 select CONCAT(pkey, -, vname) as "项目-版本" from test_jira_project_ve…...

MySQL 迁移完不能快速导数据了?

关于 5.6 升级到 5.7 之后&#xff0c;GTID 的相关功能的注意事项。 作者&#xff1a;秦福朗&#xff0c;爱可生 DBA 团是队成员&#xff0c;负责项目日常问题处理及公司平台问题排查。热爱互联网&#xff0c;会摄影、懂厨艺&#xff0c;不会厨艺的 DBA 不是好司机&#xff0c;…...

Lazysysadmin靶机

信息收集 主机发现 nmap -sn 192.168.88.0/24 //-sn&#xff1a;制作主机发现&#xff0c;不做端口扫描&#xff1b;扫描结果包含本机IP 端口扫描 nmap --min-rate 10000 -p- 192.168.88.136 扫描端口详细信息 端口扫描发现&#xff0c;该主机的22、80、139、445、3306、…...

LeetCode09——回文数

LeetCode09 自己写的解,转化为字符串再反转&#xff0c;比较笨。 import java.util.Scanner; public class Result01 {public static void main(String[] args) {System.out.println("请输入整数&#xff0c;我来帮您判断是否是回文数。");Scanner scanner new Sc…...

云安全—分布式基础

0x00 前言 云必然是依赖于分布式技术来进行实现的&#xff0c;所以有必要学习和来了解分布式相关的内容 0x01 分布式计算 1.基本概述 分布式计算的定义&#xff1a;通过网络互联的计算机都具有一定的计算能力&#xff0c;他们之间互相传递数据&#xff0c;实现信息共享&…...

Spring(18) @Order注解介绍、使用、底层原理

目录 一、简介二、List 注入使用示例2.1 测试接口类2.2 测试接口实现类12.3 测试接口实现类22.4 启动类&#xff08;测试&#xff09;2.5 测试结果场景一&#xff1a;场景二&#xff1a; 三、CommandLineRunner 使用示例3.1 接口实现类13.2 接口实现类23.3 测试结果场景一&…...

目标检测YOLO实战应用案例100讲-基于改进YOLOv6的轧钢表面细小缺陷检测

目录 前言 存在的问题 轧钢缺陷图像特征分析 2.1单一类型缺陷 2.2面状缺陷...

leetcode:507. 完美数(python3解法)

难度&#xff1a;简单 对于一个 正整数&#xff0c;如果它和除了它自身以外的所有 正因子 之和相等&#xff0c;我们称它为 「完美数」。 给定一个 整数 n&#xff0c; 如果是完美数&#xff0c;返回 true&#xff1b;否则返回 false。 示例 1&#xff1a; 输入&#xff1a;num…...

智能物联网解决方案:蓝牙IOT主控模块打造高效监测和超低功耗

物联网蓝牙模块&#xff0c;无论单模&#xff0c;还是双模&#xff0c;或者双模音频的选择&#xff0c;如下文说描述&#xff1a; 蓝牙芯片模块市场的百花齐放&#xff0c;也带来的工程师在选型时碰到很大的困难&#xff0c;但是无论是做半成品&#xff0c;还是做成品&#xf…...

vue 拿到数据后,没有重新渲染视图,nuxt.js拿到数据后,没有重新渲染视图,强制更新视图

以下为Vue2的解决方案 一、 Vue.set&#xff08;&#xff09; 问&#xff1a;什么情况下使用&#xff1f; 答&#xff1a;如果你向响应式数据添加新的“属性”&#xff0c;理论上&#xff0c;一般情况下是没问题的&#xff0c;但是&#xff0c;如果你的级别比较深&#xff0c;又…...

Docker基础操作命令演示

Docker中的常见命令&#xff0c;可以参考官方文档&#xff1a;https://docs.docker.com/engine/reference/commandline/cli/ 1、常见命令介绍 其中&#xff0c;比较常见的命令有&#xff1a; 命令说明文档地址docker pull拉取镜像docker pulldocker push推送镜像到DockerReg…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...