缺失的数据范围,思维,hduoj
Problem Description
著名出题人小Q出过非常多的题目,在这个漫长的过程中他发现,确定题目的数据范围是非常痛苦的一件事。
每当思考完一道题目的时间效率,小Q就需要结合时限以及评测机配置来设置合理的数据范围。
因为确定数据范围是一件痛苦的事,小Q出了非常多的题目之后,都没有它们设置数据范围。对于一道题目,小Q会告诉你他的算法的时间复杂度为O(nalogbn),且蕴含在这个大O记号下的常数为1。同时,小Q还会告诉你评测机在规定时限内可以执行k条指令。小Q认为只要na(⌈log2n⌉)b不超过k,那么就是合理的数据范围。其中,⌈x⌉表示最小的不小于x的正整数,即x上取整。
自然,小Q希望题目的数据范围n越大越好,他希望你写一个程序帮助他设置最大的数据范围。
Input
第一行包含一个正整数T(1≤T≤1000),表示测试数据的组数。
每组数据包含一行三个正整数a,b,k(1≤a,b≤10,106≤k≤1018),分别描述时间复杂度以及允许的指令数。
Output
对于每组数据,输出一行一个正整数n,即最大可能的n。
Sample Input
3
1 1 100000000
2 1 100000000
1 3 200000000
Sample Output
4347826
2886
48828
解析:
首先二分枚举n很容易想到,但check函数如果像题目一样去做就会爆掉(肯定不能像题目所说的那样去做,不可能白送分)
所以我们要想一个另外的方式句验证,这就要靠思维和数感了:
将乘法变成除法,且用正整型存储,n^a就是n自乘a次,n自乘a次等于k,那么k除n除a次等于1
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
LL a, b, k,ppp;int check(LL m) {LL kk = k;for (int i = 1; i <= a; i++) {if (kk / m > 0) {kk /= m;}elsereturn 1;}LL t1 = ceil(log2(m));if (t1 == 0)return 0;for (int i = 1; i <= b; i++) {if (kk / t1 > 0)kk /= t1;elsereturn 1;}return 0;
}int main() {int T;scanf("%d", &T);while (T--) {scanf("%lld%lld%lld", &a, &b, &k);LL l = 1, r = k, mid, ans; while (l <= r) {mid = l + (r - l) / 2;if (check(mid)) {r = mid - 1;}else {ans = mid;l = mid + 1;}}printf("%lld\n", ans);}return 0;
}
相关文章:
缺失的数据范围,思维,hduoj
Problem Description 著名出题人小Q出过非常多的题目,在这个漫长的过程中他发现,确定题目的数据范围是非常痛苦的一件事。 每当思考完一道题目的时间效率,小Q就需要结合时限以及评测机配置来设置合理的数据范围。 因为确定数据范围是一件痛苦…...
极简的MapReduce实现
目录 1. MapReduce概述 2. 极简MapReduce内存版 3. 复杂MapReduce磁盘版 4. MapReduce思想的总结 1. MapReduce概述 以前写过一篇 MapReduce思想 ,这次再深入一点,简单实现一把单机内存的。MapReduce就是把它理解成高阶函数,需要传入map和…...
更新暑假做过的项目(医学数据多标签分类与多标签分割,医学数据二分类)
写在前面 暑假参与了两个项目,收获颇多。搭建网络有许多走过的弯路与经验,调参也是一个必要的技能,在这里想一并分享给大家我在项目中积累的经验和一些小技巧。 PS:结合个人经验与网上经验,大家斟酌自取。 下面的几个…...
谷歌浏览器访问127.0.0.1时报错 Failed to read the ‘sessionStorage‘ property from ‘Window‘
谷歌浏览器访问 127.0.0.1 时报错如下: Uncaught DOMException: Failed to read the ‘sessionStorage’ property from ‘Window’: Access is denied for this document. 原因: 谷歌浏览器设置中禁止了 127.0.0.1 存储数据到浏览器设备上 解决方法…...
云技术分享 | 快速构建 CodeWhisperer 代码生成服务,让 AI 辅助编程
前言 Amazon CodeWhisperer 是 2023 年 4 月份发布的一款通用的、机器学习驱动的代码生成器服务,CodeWhisperer 经过数十亿行 Amazon 和公开可用代码的训练,可以理解用自然语言(英语)编写的评论,可在集成式开发环境 (…...
开发万岳互联网医院APP:技术要点和关键挑战
随着移动技术和互联网的飞速发展,互联网医院APP成为医疗领域的一项重要创新。这些应用程序为患者和医生提供了更多便利和互动性,但开发互联网医院APP也伴随着一系列的技术要点和关键挑战。本文将探讨互联网医院APP的技术要点以及在开发过程中需要面对的挑…...
漫谈下一代防火墙与Web应用防火墙的区别
如今,Web应用程序变得越来越复杂,更是黑客非常感兴趣的目标。在谈到网络安全的话题时,我们总会讨论下一代防火墙与Web应用防火墙的区别。当已经拥有下一代防火墙(NGFW)时,为什么需要Web应用程序防火墙&…...
基于马尔可夫随机场的图像去噪算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1、马尔可夫随机场的基本原理 4.2、基于马尔可夫随机场的图像去噪算法 5.算法完整程序工程 1.算法运行效果图预览 原图: 加入噪声的图像: 滤波后的图像 迭代过程…...
【综合类型第 39 篇】HTTP 状态码详解
这是【综合类型第 39 篇】,如果觉得有用的话,欢迎关注专栏。 注: 本篇博客只是在「阿里云开发者社区版 HTTP 状态码详解」中按自己的写作风格做了断句,归纳整理,方便查看和阅读。 尊重原创,原文链接&…...
win10 hosts文件修改不生效
解决办法可以参考:修改hosts 不生效? 三种方法解决...
网络库OKHttp(1)流程+拦截器
序、慢慢来才是最快的方法。 背景 OkHttp 是一套处理 HTTP 网络请求的依赖库,由 Square 公司设计研发并开源,目前可以在 Java 和 Kotlin 中使用。对于 Android App 来说,OkHttp 现在几乎已经占据了所有的网络请求操作。 OKHttp源码官网 版…...
关于 Invalid bound statement (not found): 错误的解决
关于 Invalid bound statement not found: 错误的解决 前言错误原因解决方法1. 检查SQL映射文件2. 检查MyBatis配置3. 检查SQL语句4. 检查命名约定5. 清除缓存6. 启用日志记录 重点注意 结语 我是将军我一直都在,。! 前言 当开发Java Spring Boot应用程…...
深入理解强化学习——智能体的类型:有模型强化学习智能体与免模型强化学习智能体
分类目录:《深入理解强化学习》总目录 根据智能体学习的事物不同,我们可以把智能体进行归类。基于价值的智能体(Value-based agent)显式地学习价值函数,隐式地学习它的策略。策略是其从学到的价值函数里面推算出来的。…...
vue项目获得开源代码之后跳过登录界面
readme运行 进入到账号和密码 找到main.js 比如说,以上这段代码 剩下next()就成功进入了...
WPS、Excel表格增加一列,序列1到任意大小 / 填充某个范围的数字到列
Excel添加一列递增的数字方法有如下: 一、最常用的,使用鼠标放到右下角下拉增加 1、选中起始框的右下角,直到显示黑色实心十字 2、一直向下拖动 3、成功 这种填充方式是最常用的,100以内都可以轻松瞬间完成 1~100填充 但是如果…...
在 rider 里用配置 Perforce(P4)的注意事项
整个配置界面里,关键就配2处位置,但是都有些误导性。 1是连接形参的4个参数都得填,字符集看你项目的要求,这里工作区其实指的是你的工作空间,还不如显示英文的 Workspace 呢,搞得我一开始没填,…...
在Spring中,标签管理的Bean中,为什么使用@Autowired自动装配修饰引用类(前提条件该引用类也是标签管理的Bean)
Autowired是Spring框架的一个注解,它可以用来完成自动装配。 自动装配是Spring框架的一个特性,它可以避免手动去注入依赖,而是由框架自动注入。这样可以减少代码的重复性和提高开发效率。 在使用Autowired注解时,Spring会自动搜…...
俄罗斯YandexGPT 2在国家考试中获得高分;OpenAI API开发者快速入门指南
🦉 AI新闻 🚀 俄罗斯YandexGPT 2聊天机器人成功在国家考试中获得高分 摘要:俄罗斯YandexGPT 2聊天机器人通过国家统一考试文学科目,以55分的加权分数成功进入大学。Yandex团队强调他们在开发过程中确保数据库不包含任何关于统考…...
Nginx 同一端口下部署多个 Vue3 项目
前言 前端多项目部署到 Nginx 的同一监听端口下的解决方案,项目由一个主项目和多个子项目组成,主项目和子项目都是单独打包。 主子项目之间是使用的腾讯开源的无界(WebComponent 容器 iframe 沙箱)前端框架,能够完善…...
计算机毕业设计 无人智慧超市管理系统的设计与实现 Javaweb项目 Java实战项目 前后端分离 文档报告 代码讲解 安装调试
🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
使用python进行图像处理—图像滤波(5)
图像滤波是图像处理中最基本和最重要的操作之一。它的目的是在空间域上修改图像的像素值,以达到平滑(去噪)、锐化、边缘检测等效果。滤波通常通过卷积操作实现。 5.1卷积(Convolution)原理 卷积是滤波的核心。它是一种数学运算,…...
LangChain + LangSmith + DeepSeek 入门实战:构建代码生成助手
本文基于 Jupyter Notebook 实践代码,结合 LangChain、LangSmith 和 DeepSeek 大模型,手把手演示如何构建一个代码生成助手,并实现全流程追踪与优化。 一、环境准备与配置 1. 安装依赖 pip install langchain langchain_openai2. 设置环境变…...
链结构与工作量证明7️⃣:用 Go 实现比特币的核心机制
链结构与工作量证明:用 Go 实现比特币的核心机制 如果你用 Go 写过区块、算过哈希,也大致理解了非对称加密、数据序列化这些“硬核知识”,那么恭喜你,现在我们终于可以把这些拼成一条完整的“区块链”。 不过别急,这一节我们重点搞懂两件事: 区块之间是怎么连接成“链”…...
Java求职者面试:微服务技术与源码原理深度解析
Java求职者面试:微服务技术与源码原理深度解析 第一轮:基础概念问题 1. 请解释什么是微服务架构,并说明其优势和挑战。 微服务架构是一种将单体应用拆分为多个小型、独立的服务的软件开发方法。每个服务都运行在自己的进程中,并…...
【VLAs篇】02:Impromptu VLA—用于驱动视觉-语言-动作模型的开放权重和开放数据
项目描述论文标题Impromptu VLA:用于驱动视觉-语言-动作模型的开放权重和开放数据 (Impromptu VLA: Open Weights and Open Data for Driving Vision-Language-Action Models)研究问题自动驾驶的视觉-语言-动作 (VLA) 模型在非结构化角落案例场景中表现不佳…...
