竞赛 深度学习+opencv+python实现车道线检测 - 自动驾驶
文章目录
- 0 前言
- 1 课题背景
- 2 实现效果
- 3 卷积神经网络
- 3.1卷积层
- 3.2 池化层
- 3.3 激活函数:
- 3.4 全连接层
- 3.5 使用tensorflow中keras模块实现卷积神经网络
- 4 YOLOV5
- 6 数据集处理
- 7 模型训练
- 8 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 **基于深度学习的自动驾驶车道线检测算法研究与实现 **
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:4分
- 创新点:4分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 课题背景
从汽车的诞生到现在为止已经有一百多年的历史了,随着车辆的增多,交通事故频繁发生,成为社会发展的隐患,人们的生命安全受到了严重威胁。多起事故发生原因中,都有一个共同点,那就是因为视觉问题使驾驶员在行车时获取不准确的信息导致交通事故的发生。为了解决这个问题,高级驾驶辅助系统(ADAS)应运而生,其中车道线检测就是ADAS中相当重要的一个环节。利用机器视觉来检测车道线相当于给汽车安装上了一双“眼睛”,从而代替人眼来获取车道线信息,在一定程度上可以减少发生交通事故的概率。
本项目基于yolov5实现图像车道线检测。
2 实现效果
3 卷积神经网络
受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
3.1卷积层
卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
3.2 池化层
池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
3.3 激活函数:
激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体
3.4 全连接层
在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。
3.5 使用tensorflow中keras模块实现卷积神经网络
class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32, # 卷积层神经元(卷积核)数目kernel_size=[5, 5], # 感受野大小padding='same', # padding策略(vaild 或 same)activation=tf.nn.relu # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs) # [batch_size, 28, 28, 32]x = self.pool1(x) # [batch_size, 14, 14, 32]x = self.conv2(x) # [batch_size, 14, 14, 64]x = self.pool2(x) # [batch_size, 7, 7, 64]x = self.flatten(x) # [batch_size, 7 * 7 * 64]x = self.dense1(x) # [batch_size, 1024]x = self.dense2(x) # [batch_size, 10]output = tf.nn.softmax(x)return output
4 YOLOV5
简介
基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。
YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:
模型结构图如下:
YOLOv5s 模型算法流程和原理
YOLOv5s模型主要算法工作流程原理:
(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。
(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。
(3) 颈部层应用路径聚合网络和CSP2_X进行特征融合。
(4) 使用GIOU_Loss作为损失函数。
关键代码:
6 数据集处理
获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐
深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。
考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。
数据标注简介
通过pip指令即可安装
pip install labelimg
在命令行中输入labelimg即可打开
打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo
点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok
数据保存
点击save,保存txt。
7 模型训练
配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:
配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。
目前支持的模型种类如下所示:
训练过程
8 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

竞赛 深度学习+opencv+python实现车道线检测 - 自动驾驶
文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV56 数据集处理7 模型训练8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 &am…...

spring boot 下载resources下的静态文件为流格式
废话不多说,直接上代码 一、下载逻辑 public void downAppApk(HttpServletResponse response){ClassPathResource classPathResource new ClassPathResource("app/xxxxxx.apk");if (!classPathResource.exists()) {throw new BusinessException("安…...

HTML渲染过程
整个渲染过程: 将 URL 对应的各种资源,通过浏览器渲染引擎的解析,输出可视化的图像。 基本概念: HTML 解释器:解析html语言、将html文本翻译成dom树; CSS 解释器:解析css语言,给…...

[已解决]llegal target for variable annotation
llegal target for variable annotation 问题 变量注释的非法目标 思路 复制时编码错误,自己敲一遍后正常运行 #** 将垂直知识加入prompt,以使其准确回答 **# prompt_templates { # "recommand":"用户说:__INPUT__ …...

nodejs基于vue小型企业银行账目管理系统
这就产生了以台式计算机为核心的管理信息系统在大规模的事务处理和对工作流的管理等方面的应用,在银行帐目管理之中的应用日益增加 且会出现信息的重复传递问题,因此该过程需要进行信息化,以利用计算机进行帐目管理。 3.1 银行帐目管理系统功能模块 …...

pointnet和pointnet++点云分割和分类
目录 1. pointnet 1.1 点云数据的特点 1.2 模型功能 1.3 网络结构 1.3.1 分类网络 1.3.2 分割网络 2. pointnet 2.1 模型 2.2 sampling layer组件 2.3 grouping layer 2.4 pointnet 1. pointnet 1.1 点云数据的特点 (1)无序性:…...

Docker-compose和Consul
目录 1、docker-compose 简介 1.1 Docker-compose 简介 2、compose 部署 2.1 Docker Compose 环境安装 2.2 YAML 文件格式及编写注意事项 * * * * 2.3 Docker Compose配置常用字段 2.4 Docker Compose 常用命令 2.5 Docker Compose 文件结构 3、Consul 3.1 什么是…...

AFL模糊测试+GCOV覆盖率分析
安全之安全(security)博客目录导读 覆盖率分析汇总 目录 一、代码示例 二、afl-cov工具下载 三、编译带覆盖率的版本并启动afl-cov 四、AFL编译插桩并运行afl-fuzz 五、结果查看 AFL相关详见AFL安全漏洞挖掘 GCOV相关详见GCOV覆盖率分析 现将两者结合,即进…...

leetcode 965.单值二叉树
/*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ //遍历判断函数 bool TreeCompare(struct TreeNode* root,int x) {if(root NULL)return true;if(root->val ! x)return false…...

云计算:掌控未来,一触即发!
🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是尘缘,一个在CSDN分享笔记的博主。📚📚 👉点击这里,就可以查看我的主页啦!👇&#x…...

Mybatis对数据库进行增删查改以及单元测试
这篇写的草率了,是好几天前学到,以后用来自己复习 UserInfo import lombok.Data;Data public class UserInfo {private int id;private String name;private int age;private String email;//LocalDateTime可用于接收 时间}Mapper UserMapper pack…...

.bat 批处理 - 查看 MySQL 状态然后启动或关闭
我的 MySQL 服务名为 MySQL80,具体的以实际为准: echo off setlocal:check_status cls sc query MySQL80 | find "RUNNING" > nul 2>&1 if %errorlevel%0 (echo Current status of MySQL service: Running ) else (echo Current st…...

跳转传参有几种方式
在Vue Router中,实现路由跳转并传参有以下几种方式: 1. 路由参数(Route Params): 可以通过在路由配置中定义动态的占位符(即路由参数),并在跳转时通过URL路径来传递参数。这种方式适…...

DVWA靶场Medium难度部分解析
前言 好久没做题,不想吹牛逼了,消停做点题QAQ Vulnerability: Command Injection 这题不咋难,老Ping题了 输个分号ls试试,没回显即被Ban了,试试别的,例如|或者&& 出了,看看源代码 把…...

SVG图形
什么是SVG SVG(Scalable Vector Graphics)是一种用于描述二维矢量图形的XML 格式文件。它是一种用于在网络上显示图形的开放标准,旨在与Web上的其他技术(如HTML和CSS)集成,并支持在不失真的情况下缩放和调…...

冒泡排序和简答选择排序
冒泡排序 一种典型的交换排序 类似水冒泡,大元素经不断的交换由水底慢慢的浮出 从头到尾,循环比较两相邻的元素 大的元素移到后面,小的放前面-每次循环,大的元素会排到最后 代码如下: #include<stdio.h> …...

leetcode3. 无重复字符的最长子串 [滑动窗口]
题目 给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2: 输入: s "bbbbb" 输出: 1 解释:…...

软件工程与计算总结(十六)详细设计的设计模式
一.设计模式基础 某种意义上来说,设计模式就是设计经验的总结~ 设计模式不是简单的经验总结,更不是无中生有,它是经过实践反复检验、能解决关键技术难题、有广泛应用前景和能够显著提高软件质量的有效的经验总结。 每个模式都不是独立的&a…...

List集合拆分为多个List
list 拆分 目录概述需求: 设计思路实现思路分析1.list 拆分是2.用stream的parallel实现list的分批处理3.使用stream的parallel实现list的分批处理 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full bus…...

Hadoop3教程(十三):MapReduce中的分区
文章目录 (96) 默认HashPartitioner分区(97) 自定义分区案例(98)分区数与Reduce个数的总结参考文献 (96) 默认HashPartitioner分区 分区,是Shuffle里核心的一环…...

笔记本Win10系统一键重装操作方法
笔记本电脑已经成为大家日常生活和工作中必不可少的工具之一,如果笔记本电脑系统出现问题了,那么就会影响到大家的正常操作。这时候就可以考虑给笔记本电脑重装系统了。接下来小编给大家介绍关于一键重装Win10笔记本电脑系统的详细步骤方法。 推荐下载 系…...

FilterRegistrationBean能不能排除指定url
文章目录 什么是FilterRegistrationBean举个栗子但是如果我想要排除某些uri方法总结FilterRegistrationBean只能设置指定的url进行过滤,而不能指定排除uri,只能使用OncePerRequestFilter的shouldNotFilter方法,排除uri 什么是FilterRegistrationBean FilterRegistrationBean是…...

【LeetCode】36. 有效的数独
1 问题 请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图&…...

华为---PPP协议简介及示例配置
PPP协议简介 PPP是Point-to-Point Protocol的简称,中文翻译为点到点协议。与以太网协议一样,PPP也是一个数据链路层协议。以太网协议定义了以太帧的格式,PPP协议也定义了自己的帧格式,这种格式的帧称为PPP帧。 利用PPP协议建立的二层网络称为…...

asp.net老年大学信息VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio计算机毕业设计
一、源码特点 asp.net老年大学信息管理系统是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使用c# 语言开发 asp.net老年大学信息管理系统…...

模型量化笔记--对称量化和非对称量化
1–量化映射 量化映射的通用公式为: r S ( q − Z ) r S(q - Z) rS(q−Z) 其中r表示量化前数据的真实值,S表示缩放因子,q表示量化后的数值,Z表示零点 2–非对称量化 非对称量化需要一个偏移量Z来完成零点的映射,即量化前的零…...

PA2019 Terytoria
洛谷P5987 [PA2019] Terytoria 题目大意 在一个平面直角坐标系上,有一个长度为 X X X,宽度为 Y Y Y的地图,这个地图的左边界和右边界是连通的,下边界和上边界也是连通的。 在地图中,有 X Y X\times Y XY个格子以及…...

内容分发网络CDN分布式部署真的可以加速吗?原理是什么?
Cdn快不快?她为什么会快?同样的带宽为什么她会快?原理究竟是什么,同学们本着普及知识的想法,我了解的不是很深入,适合小白来看我的帖子,如果您是大佬还请您指正错误的地方,先谢谢大佬…...

微服务docker部署实战
docker基础和进阶(*已掌握的可以跳过 *) 基础 docker基础 进阶 docker进阶 准备工作 提前准备好mysql和redis的配置,如下 在/zzq/mysql/conf目录下配置mysql配置文件my.cnf [client] #设置客户端字符集 default_character_setutf8 [mysqld] #开启定时任务 event_s…...

js实现拖拽功能
基于onMouseDown 、onMouseMove 、onMouseUp 使用 mousedown、mousemove 和 mouseup 事件来实现拖拽的基本思路是: 在 mousedown 事件中,开始追踪拖拽操作并记录鼠标按下的位置。 在 mousemove 事件中,根据鼠标的移动,更新被拖拽…...