当前位置: 首页 > news >正文

计算机网络笔记、面试八股(一)——TCP/IP网络模型

Note:【计算机网络笔记、面试八股】系列文章共计5篇,现已更新3篇,剩余2篇(TCP连接、Web响应)会尽快更新,敬请期待!

本章目录

    • 1. TCP/IP网络模型
      • 1.1 应用层
        • 1.1.1 应用层作用
        • 1.1.2 应用层有哪些常用协议
      • 1.2 运输层
        • 1.2.1 TCP与UDP的区别
        • 1.2.2 分块传输
        • 1.2.3 端口
      • 1.3 网络层
        • 1.3.1 IP报文
        • 1.3.2 IP地址
        • 1.3.3 网络号和主机号的获得
        • 1.3.4 子网掩码的获得
        • 1.3.5 路由
        • 1.3.6 IP地址与MAC地址的区别
        • 1.3.7 ARP协议
          • 1.3.7.1 ARP协议如何工作
          • 1.3.7.2 广播包的特征
        • 1.3.8 IP报文经过路由器的转发过程及变化
      • 1.4 网络接口层
        • 1.4.1 网络接口层作用
        • 1.4.2 网络接口层协议
        • 1.4.3 为什么要加MAC头部/为什么有了IP地址还要用MAC地址

1. TCP/IP网络模型

OSI是七层协议模型,五层协议只是OSI和TCP/IP的综合。实际应用还是TCP/IP的四层结构,为了方便可以把最下面两层称为网络接口层。


在这里插入图片描述

Note:最下层(物理层)是第一层,最上层(应用层)为第五层,不要搞反顺序。

网络接口层的传输单位是帧(frame),IP 层的传输单位是包(packet),TCP 层的传输单位是段(segment),HTTP 的传输单位则是消息或报文(message)。但这些名词并没有什么本质的区分,可以统称为数据包。

1.1 应用层

1.1.1 应用层作用

应用层直接为用户的应用进程提供服务,只需专注于为用户提供应用功能,无需关心数据是如何传输的。

1.1.2 应用层有哪些常用协议

  1. HTTP协议

目前绝大部分采用的都是HTTP 1.1版本,默认开启长连接(connections: Keep-Alive)。

HTTP协议是“无状态”的协议,一般通过Session来记录客户端的状态。

  1. SMTP协议

SMTP协议是邮件发送协议,接收邮件的协议并不是SMTP,而是POP3或IMAP。

  1. POP3/IMAP协议

负责接收邮件的协议是POP3/IMAP,后者更新一点。

  1. FTP协议

FTP协议用于文件传输,是基于客户端/服务器(C/S)模式设计的,在客户端和服务器之间建立两个连接。该协议的优点是可以屏蔽操作系统和文件存储方式。

FTP协议的独特优势:(与其他C/S程序最大的不同点)

它在两个主机之间使用了两条TCP连接,而其他C/S应用程序一般只有一条TCP连接:

  • 控制连接:用于传送控制信息(命令和响应)
  • 数据连接:用于数据传送
  1. Telnet协议

Telnet是远程登录协议,通过一个终端登录到其他服务器。

Telnet最大的缺点之一是所有数据(包括用户名和密码)均以明文形式发送,有着安全风险。这也是为什么SSH协议取代Telnet协议的主要原因。

  1. SSH协议

SSH是安全的网络传输协议,专为远程登录会话和其他网络服务提供安全性的协议。

SSH相比于Telnet的区别在于SSH会对数据进行加密。利用SSH协议可以有效防止远程管理过程中的信息泄漏问题。

1.2 运输层

  1. 运输层作用

运输层负责向两个主机中进程之间的通信提供通用的数据传输服务。由于一个主机可以同时运行多个进程,因此运输层有复用分用的功能。

​ 复用:多个应用层进程可同时使用下面运输层的服务。

​ 分用:把收到的信息分别交付给上面应用层中相应的进程。

​ 运输层并不负责将数据从一个设备传输到另一个设备,这是网络层的任务,不要混淆。

​ “通用的”是指并不针对某一个特定的网络应用,而是多种应用可以使用同一个运输层服务。

  1. 运输层协议
    • 传输控制协议TCP(Transmission Control Protocol):面向连接的,数据传输单位是报文段,能够进行可靠交付
    • 用户数据报协议UDP(User Datagram Protocol):无连接的,数据传输的单位是用户数据报,不保证可靠交付,只能提供“尽最大努力交付”

1.2.1 TCP与UDP的区别

大部分应用使用的正是 TCP传输层协议,比如 HTTP应用层协议。TCP相比 UDP多了很多特性,比如流量控制、超时重传、拥塞控制等,这些都是为了保证数据包能可靠地传输给对方。

UDP相对来说就很简单,只负责发送数据包,不保证数据包是否能抵达对方,但UDP的实时性相对更好,传输效率也高。

  1. TCP是面向连接的(传输数据前要建立连接),而UDP是无连接的(传输数据前不需要建立连接)
  2. TCP提供可靠的服务(无差错、不丢失、不重复、按序到达),而UDP是尽最大努力交付,不保证可靠交付
  3. TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;而UDP是面向报文的
  4. TCP连接只能是点对点的,UDP支持一对一、一对多、多对一、多对多
  5. TCP首部开销20字节,而UDP首部只有8个字节(开销小)
  6. TCP的逻辑通信信道是全双工的可靠信道,而UDP是不可靠信道

1.2.2 分块传输

应用传输的数据可能会非常大,如果直接传输不好控制,因此当传输层的数据包大小超过MSS(TCP最大报文段长度)时,就要将数据包分块,这样即使中途有一个分块丢失或者损坏了,只需要重新发送这一个分块,而不用重新发送整个数据包。在TCP协议中,把这样的分块叫做报文段。

1.2.3 端口

运输层把数据包传给应用时,如果接收设备上有很多应用在接收或者传输数据,因此需要用一个编号将应用区分开来,这个编号就是端口

比如 80 端口通常是 Web 服务器用的,22 端口通常是远程登录服务器用的。而对于浏览器(客户端)中的每个标签栏都是一个独立的进程,操作系统会为这些进程分配临时的端口号。

由于运输层的报文中会携带端口号,因此接收方可以识别出该报文是发送给哪个应用。

1.3 网络层

  1. 网络层作用(寻址+路由

    • 负责为分组交换网上的不同主机提供通信服务。
      • 在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组进行传送。
      • 在TCP/IP体系中,由于网络层使用的是IP协议,因此分组也叫作==IP数据报==,或者简称为数据报
    • 选择合适的路由,使源主机运输层传下来的分组,能够通过网络中的路由找到目的主机。
  2. 网络层协议
    IP(Internet Protocol)、ICMP、IGMP、ARP、RARP

1.3.1 IP报文

IP协议会将运输层传输下来的报文作为数据部分,再加上IP包头组装成IP报文,如果IP报文大小超过MTU(以太网中一般为 1500 字节)就会再次进行分片,得到一个即将发送到网络的IP报文。

1.3.2 IP地址

网络层负责将数据从一个设备传输到另一个设备,世界上那么多设备,又该如何找到对方呢?因此,网络层需要有区分设备的编号。

我们一般用 IP 地址给设备进行编号,对于 IPv4 协议, IP 地址共 32 位,分成了四段(比如,192.168.100.1),每段是 8 位。

只有一个单纯的 IP 地址虽然做到了区分设备,但是寻址起来就特别麻烦,全世界那么多台设备,难道一个一个去匹配?这显然不科学。

因此,需要将IP地址分成两种意义:

  • 一个是网络号,负责标识该IP地址是属于哪个子网
  • 一个是主机号,负责标识同一子网下不同主机

在寻址过程中,先匹配到相同的网络号(表示要找到同一子网),才会去找对应的主机。

1.3.3 网络号和主机号的获得

将IP地址10.100.122.2和子网掩码255.255.255.0进行按位与运算,就可以得到网络号和主机号。

1.3.4 子网掩码的获得

10.100.122.0/24,斜杠后面的数字表示32位子网掩码从左数共有多少个连续的1,/24就是代表子网掩码的二进制为「11111111-11111111-11111111-00000000」,那么对应的十进制子网掩码为 255.255.255.0

1.3.5 路由

IP协议除了寻址作用,还有另一个作用——路由

实际场景中,两台设备并不是用一条网线连接起来的,而是通过很多网关、路由器、交换机等众多网络设备连接起来的,那么就会形成很多条网络的路径,因此当数据包到达一个网络节点,就需要通过路由算法决定下一步走哪条路径。

路由器寻址工作中,就是要找到目标地址的子网,找到后进而把数据包转发给对应的网络内。

IP寻址是告诉我们去往下一个目的地该朝哪个方向走,路由则是根据【下一个目的地】选择路径。寻址像是在导航,路由像是在操作方向盘。

1.3.6 IP地址与MAC地址的区别

  1. 使用的区别:IP地址是逻辑地址,是网络层及以上各层使用的地址。而MAC地址,又称硬件地址,是物理地址,是数据链路层和物理层使用的地址。
  2. 放置位置的区别:IP地址放在IP数据报的首部,而MAC地址放在MAC帧的首部
  3. 长度的区别:IP地址由32bit构成,而MAC地址由48bit构成
  4. 为什么要使用两种不同的地址——IP数据报在网络传输过程中,不论经过多少次路由转发,IP数据报首部的源IP地址和目的IP地址都不变,用于表示源主机和目的主机这样一个端到端的关系,而在网络接口层传输MAC帧时,MAC帧头部的源MAC地址和目的MAC地址分别是相邻结点间的MAC地址,所以每经过一个路由就会改变一次。

1.3.7 ARP协议

ARP(Address Resolution Protocol),地址解析协议,用于实现从IP地址到MAC地址的映射,即询问目标IP对应的MAC地址。

1.3.7.1 ARP协议如何工作
  1. 首先,每个主机都会在自己的ARP高速缓存中维护一个本局域网上各主机和路由器的IP地址和MAC地址的映射表
  2. 当源主机要发送数据时,首先会检查ARP映射表中是否有目的IP地址对应的MAC地址。
    • 如果有,则直接通过MAC地址找到对应的主机发送数据
    • 如果没有,则向本局域网中的所有主机发送ARP广播包(包含源主机IP、源主机MAC地址、目的主机IP、暂时以12个F表示的目的主机MAC地址)
  3. 当本局域网中的所有主机收到该ARP广播包时,首先检查广播包中的目的IP地址是否和自己一样
    • 如果相同,则
      • 从广播包中取出源主机IP地址和源主机MAC地址写入自己的ARP映射表中。如果之前就存在,则覆盖。
      • 然后将自己的MAC地址写入ARP响应中,告诉源主机自己是它要找的目的MAC地址
    • 如果不相同就直接丢弃
  4. 源主机收到ARP响应包后,将目的主机的IP地址和MAC地址写入自己的ARP映射表,并利用此信息发送数据。如果源主机一直未收到ARP请求包,表示ARP查询失败。
1.3.7.2 广播包的特征

大部分的广播包,它们有一个共同特征:二层封装时目的MAC是全f(ffff.ffff.ffff)或三层封装时目的IP是全1(255.255.255.255)。可以这样更方便的记住:目的地址最大的,就是广播。

1.3.8 IP报文经过路由器的转发过程及变化

路由器收到数据包后,报文送到数据链路层,数据链路层解封以太网帧头部,提取目的MAC地址,查看目的MAC地址是不是自己本身的MAC地址。这个时候出现两种情况,具体如下:

  • 情况1:是本机的MAC地址,则把报文传到网络层,由网络层继续解析。
  • 情况2:不是本机的MAC地址,则丢弃报文。

假设是情况1,目的MAC是自己的MAC,把报文送到网络层解析。送到网络层后,网络层解析,提取目的IP地址,判断目的IP地址是不是本机的IP地址。这个时候再次出现两种情况,具体如下:

  • 情况1:是本机IP,则把报文送到上层,有传输层进行解析。由于本次主要讲解转发流程,就不讲传输层解析的过程了。
  • 情况2:不是本机IP,则去查路由表,匹配出接口。

假设是情况2,不是本机IP,查路由表根据路由的最长掩码匹配原则,匹配路由表,找到出接口。查路由的时候会出现四种情况,具体如下:

  • 情况1:没有匹配路由,无法继续转发,则丢弃报文。并向源IP发送目的不可达的ICMP报文。
  • 情况2:匹配直连路由,网络层封装目的IP和源IP,使用目的IP地址查ARP表。寻找目的MAC。
  • 情况3:匹配非直连路由,网络层封装目的IP和源IP,使用路由表里的下一跳IP地址查ARP表。寻找下一跳IP地址的目的MAC。
  • 情况4:匹配默认路由,网络层封装目的IP和源IP,使用路由表里的下一跳IP地址查ARP表。寻找下一跳IP地址的目的MAC。

假设匹配到路由,去ARP表,匹配目的IP对应的MAC地址。这个时候出现两种情况,具体如下:

  • 情况1:在ARP表里匹配到了对应的MAC地址,则把匹配到的MAC封装到帧头部的目的MAC,把本机出接口的MAC封装到帧头部的源MAC里。然后发送出去。
  • 情况2:在ARP表里没有匹配到对应的MAC地址,则发送ARP请求,寻找目的IP对应的MAC地址。

假设没有匹配到对应的MAC地址,发送ARP请求,这个时候会遇到两种情况。具体如下:

  • 情况1:没有收到ARP响应,无法继续获取目的IP对应的MAC地址。则丢弃报文。
  • 情况2:收到了ARP响应,首先把响应报文中的源MAC解析出来,然后把目的IP和从响应报文中获取的源MAC放到ARP表中,形成映射关系,并对这个映射关系添加过期时间。然后把MAC封装到目的MAC里,把本机出接口的MAC封装到源MAC里,然后发送出去。

1.4 网络接口层

我们可以把网络接口层看成是数据链路层和物理层的合体。

1.4.1 网络接口层作用

  • 数据链路层将网络层交下来的IP数据报加上MAC头部封装成,在两个相邻计算机节点之间的链路上传送帧。每一帧都包括数据和必要的控制信息(如同步信息、地址信息、差错控制等)
  • 物理层是用来实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异

1.4.2 网络接口层协议

PPP协议

1.4.3 为什么要加MAC头部/为什么有了IP地址还要用MAC地址

IP头部中的接收方IP地址表示数据包的目的地,通过这个地址我们可以判断要将数据包发到哪里,但是在以太网中,这个思路是行不通的。

因为以太网是一种在【局域网】内,把附近的设备连接起来,使他们之间可以通讯的技术。电脑上的以太网接口,Wi-Fi接口,以太网交换机、路由器上的千兆,万兆以太网口,还有网线,它们都是以太网的组成部分。

以太网在判断数据包目的地时和IP的方式不同,因此必须采用相匹配的方式才能在以太网中将数据包发送到目的地。而MAC头部就是实现这个的。

MAC头部是以太网使用的头部,它包含了接收方和发送方的MAC地址等信息,我们可以通过ARP协议获取对方的MAC地址。

相关文章:

计算机网络笔记、面试八股(一)——TCP/IP网络模型

Note:【计算机网络笔记、面试八股】系列文章共计5篇,现已更新3篇,剩余2篇(TCP连接、Web响应)会尽快更新,敬请期待! 本章目录1. TCP/IP网络模型1.1 应用层1.1.1 应用层作用1.1.2 应用层有哪些常用…...

51单片机入门 - 简短的位运算实现扫描矩阵键盘

介绍 例程使用 SDCC 编译、 stcgal 烧录,如果你想要配置一样的环境,可以参考本专栏的第一篇文章“51单片机开发环境搭建 - VS Code 从编写到烧录”,我的设备是 Windows 10,使用普中51单片机开发板(STC89C52RC&#xf…...

Mr. Cappuccino的第45杯咖啡——Kubernetes之部署SpringBoot项目

Kubernetes之部署SpringBoot项目创建一个SpringBoot项目将SpringBoot项目打成Jar包使用Dockerfile制作镜像部署SpringBoot项目创建一个SpringBoot项目 pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache…...

vscode在远程服务器提交git的时候无需每次都要输入账号密码的配置

要避免在每次 git 操作时都需要输入账号和密码&#xff0c;可以使用 SSH 鉴权&#xff0c;具体步骤如下&#xff1a;生成 SSH key在本地计算机上使用命令 ssh-keygen -t rsa -b 4096 生成 SSH key。这个命令将在 ~/.ssh 目录下生成两个文件&#xff1a;id_rsa 和 id_rsa.pub&am…...

【Spring 基础】

【Spring 基础】 一、 Spring 介绍 1. 简述 Spring 技术是 JavaEE 开发必备技能&#xff0c;企业开发技术选型专业角度 简化开发&#xff0c;降低企业级开发的复杂性 IoCAOP 事务处理 框架整合&#xff0c;高效整合其他技术&#xff0c;提高企业级应用开发与运行效率 MyBat…...

2023年全国最新机动车签字授权人精选真题及答案5

百分百题库提供机动车签字授权人考试试题、机动车签字授权人考试预测题、机动车签字授权人考试真题、机动车签字授权人证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 四、多选题 1.以下哪些气体属于排放污染物&#xff08…...

5138: 数字游戏

描述爸爸、妈妈还有YuYu一起玩一个数字游戏&#xff0c;玩家从某个数开始挨个轮流报数&#xff0c;当数字里含有4或7时&#xff0c;不能报出该数字&#xff0c;只能拍一下手。报数的顺序总是从YuYu开始&#xff0c;然后妈妈、爸爸&#xff0c;最后回到YuYu&#xff0c;以此类推…...

阅读笔记9——DenseNet

一、DenseNet DenseNet的网络结构如图1-1所示&#xff0c;其核心是Dense Block模块&#xff0c;Dense Block中的一个黑点就代表一个卷积模块&#xff08;不是一个卷积层&#xff0c;而是DenseNet提出的一个BottleNeck模块&#xff0c;后文有讲解&#xff09;&#xff0c;每条黑…...

PowerAutomation获取邮件附件并删除这个邮件方法

这个文章是怎么来的呢&#xff1f;现在不是低代码开发平台启蒙阶段嘛&#xff1f;笔者也有幸在工作中进行了尝试&#xff0c;目前也已经在实际工作中结合Python进行了使用&#xff0c;当然&#xff0c;是可以提高IT的工作效率的。需求是这样的&#xff0c;想从公司的EBS平台报表…...

websocket报错集锦-不断更新中

问题1&#xff1a;Failed to construct ‘WebSocket’: An insecure WebSocket connection may not be initiated from a page loaded over HTTPS. 问题描述 Mixed Content: The page at https://AAAAAA.com was loaded over HTTPS, but attempted to connect to the insecur…...

Spring Cloud Nacos源码讲解(七)- Nacos客户端服务订阅机制的核心流程

Nacos客户端服务订阅机制的核心流程 ​ 说起Nacos的服务订阅机制&#xff0c;大家会觉得比较难理解&#xff0c;那我们就来详细分析一下&#xff0c;那我们先从Nacos订阅的概述说起 Nacos订阅概述 ​ Nacos的订阅机制&#xff0c;如果用一句话来描述就是&#xff1a;Nacos客…...

【华为OD机试模拟题】用 C++ 实现 - 对称美学(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 获得完美走位(2023.Q1) 文章目录 最近更新的博客使用说明对称美学题目输入输出示例一输入输出说明示例二输入输出说明备注Code使用说明 参加华为od机试,一定要注意不要完全背诵代码࿰...

Go语言内存管理详解-学习笔记

1 自动内存管理 1.1 相关概念 Mutator&#xff1a;业务线程&#xff0c;分配新对象&#xff0c;修改对象指向关系Collector&#xff1a;GC线程&#xff0c;找到存活对象&#xff0c;回收死亡对象的内存空间Serial GC&#xff1a;只有一个collector&#xff08;需要暂停&#…...

Geospatial Data Science (4): Spatial weights

Geospatial Data Science (4): Spatial weights 在本节中,我们将学习空间分析中关键部分之一的来龙去脉:空间权重矩阵。这些是结构化的数字集,用于形式化数据集中观测值之间的地理关系。本质上,给定地理的空间权重矩阵是维度 N N N 乘以 N N N 的正定矩阵,其中...

JUC-Synchronized相关内容

设计同步器的意义多线程编程中&#xff0c;有可能会出现多个线程同时访问同一个共享、可变资源的情况&#xff0c;这个资源我们称之其为临界资源&#xff1b;这种资源可能是&#xff1a;对象、变量、文件等。共享&#xff1a;资源可以由多个线程同时访问可变&#xff1a;资源可…...

【c++】文件操作(文本文件、二进制文件)

文章目录文件操作文本文件写文件读文件二进制文件写文件读文件文件操作 程序运行时产生的数据都属于临时数据&#xff0c;程序一旦运行结束都会被释放&#xff1b; 通过文件可以将数据持久化&#xff1b; c中对文件操作需要包含头文件 文件类型分为两种&#xff1a; 1、文本文…...

带你了解IP报警柱的特点

IP可视报警柱是一款室外防水紧急求助可视对讲终端。安装在学校、广场、道路人流密集和案件高发区域&#xff0c;当发生紧急情况或需要咨询求助时按下呼叫按钮立即可与监控中心值班人员通话&#xff0c;值班人员也可通过前置摄像头了解现场情况并广播喊话。IP可视报警柱的使用特…...

一步步教你电脑变成服务器,tomcat的花生壳设置(原创)

1&#xff0c;首先你去https://console.oray.com/这网站注册个帐号&#xff0c;如果注册成功它会送你一个免费域名&#xff0c;当然不记得也没关系&#xff0c;你记住你注册的 帐号跟密码&#xff0c;然后下载它的软件&#xff08;花生壳动态域名6.0正式版&#xff09;有xp跟li…...

Python 卷积神经网络 ResNet的基本编写方法

ResNet&#xff08;Residual Network&#xff09;是由微软亚洲研究院提出的深度卷积神经网络&#xff0c;它在2015年的ImageNet挑战赛上取得了第一名的好成绩。ResNet最大的特点是使用了残差学习&#xff0c;可以解决深度网络退化问题。在传统的深度神经网络中&#xff0c;随着…...

【索引】什么是索引

&#x1f4d4; 笔记介绍 大家好&#xff0c;千寻简笔记是一套全部开源的企业开发问题记录&#xff0c;毫无保留给个人及企业免费使用&#xff0c;我是作者星辰&#xff0c;笔记内容整理并发布&#xff0c;内容有误请指出&#xff0c;笔记源码已开源&#xff0c;前往Gitee搜索《…...

【算法刷题】动态规划算法题型及方法归纳

动态规划特点 动态规划中每一个状态一定是由上一个状态推导出来&#xff0c;根据这个特点&#xff0c;可以在状态计算过程中&#xff0c;存储某一条件下的数据&#xff0c;当再次遍历该条件时&#xff0c;直接取该条件对应的数据即可&#xff0c;可以避免重复计算&#xff0c;…...

PolarDB数据库的CSN机制

背景 对postgres数据库熟悉的同学会发现在高并发场景下在获取快照处易出现性能瓶颈&#xff0c;其原因在于PG使用全局数组在共享内存中保存所有事务的状态&#xff0c;在获取快照时需要加锁以保证数据一致性。获取快照时需要持有ProcArraryLock共享锁比遍历ProcArray数组中活跃…...

使用kubeadm 部署kubernetes 1.26.1集群 Calico ToR配置

目录 机器信息 升级内核 系统配置 部署容器运行时Containerd 安装crictl客户端命令 配置服务器支持开启ipvs的前提条件 安装 kubeadm、kubelet 和 kubectl 初始化集群 &#xff08;master&#xff09; 安装CNI Calico 集群加入node节点 机器信息 主机名集群角色IP内…...

Servlet笔记(11):Servletcontext对象

1、什么是ServletContext ServletContext是一个全局储存空间&#xff0c;随服务器的生命周期变化&#xff0c; Cookie&#xff0c;Session&#xff0c;ServletContext的区别 Cookie&#xff1a; 存在于客户端的本地文本文件 Session&#xff1a; 存在于服务器的文本文件&#…...

EM算法是什么

EM算法是什么 EM算法&#xff08;Expectation-Maximization Algorithm&#xff09;是一种用于参数估计的迭代算法。它常被用于含有隐变量&#xff08;latent variable&#xff09;的概率模型中&#xff0c;例如高斯混合模型、隐马尔可夫模型等。 EM算法分为两个步骤&#xff…...

C++---线性dp---方格取数(每日一道算法2023.2.25)

注意事项&#xff1a; 本题属于"数字三角形"和"摘花生"两题的进阶版&#xff0c;建议优先看懂那两道&#xff0c;有助理解。 题目&#xff1a; 输入: 8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0输出&#xff1a; 67#include <cm…...

《第一行代码》 第八章:应用手机多媒体

一&#xff0c;使用通知 第一步&#xff0c;创建项目&#xff0c;书写布局 <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:orientation"vertical"android:layout_width"match_parent"android:layout_he…...

C++设计模式(20)——迭代器模式

亦称&#xff1a; Iterator 意图 迭代器模式是一种行为设计模式&#xff0c; 让你能在不暴露集合底层表现形式 &#xff08;列表、 栈和树等&#xff09; 的情况下遍历集合中所有的元素。 问题 集合是编程中最常使用的数据类型之一。 尽管如此&#xff0c; 集合只是一组对…...

戴尔Latitude 3410电脑 Hackintosh 黑苹果efi引导文件

原文来源于黑果魏叔官网&#xff0c;转载需注明出处。硬件型号驱动情况主板戴尔Latitude 3410处理器英特尔酷睿i7-10510U已驱动内存8GB已驱动硬盘SK hynix BC511 NVMe SSD已驱动显卡Intel UHD 620Nvidia GeForce MX230(屏蔽)无法驱动声卡Realtek ALC236已驱动网卡Realtek RTL81…...

一起Talk Android吧(第五百零四回:如何调整组件在约束布局中的位置)

文章目录 背景介绍调整方法一调整方法二经验分享各位看官们大家好,上一回中咱们说的例子是"解决retrofit被混淆后代码出错的问题",这一回中咱们说的例子是" 如何调整组件在约束布局中的位置"。闲话休提,言归正转, 让我们一起Talk Android吧! 背景介绍…...