【机器学习】决策树与分类案例分析
决策树与分类案例分析
文章目录
- 决策树与分类案例分析
- 1. 认识决策树
- 2. 分类
- 3. 决策树的划分依据
- 4. 决策树API
- 5. 案例:鸢尾花分类
- 6. 决策树可视化
- 7. 总结
1. 认识决策树
决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法。下面就来举一个例子:

通过这一个例子我们会有一个问题,为什么女生会把年龄放在第一个呢?这就是决策树的一个思想:高效性。
2. 分类
为了更好理解决策树是怎么分类的,我们给出一个例子:

现在我们有这些数据,请你根据这些数据,判断一个ID为16的人,是否能够贷款。我们现在要做的就是如何划分年龄、工作、房子、信贷这些数据。我们可以先看房子,再看工作…也可以先看工作,再看信贷…我们该如何选择来更高效的进行判断,所以我们引入信息熵、信息增益、条件熵、不确定性…
机器学习笔记02–决策树算法(手把手教你看懂)—信息熵,信息增益,增益率,基尼系数
计算过程这里就不演示了,直接出结果吧,我们以A·1,A2,A3,A4代表年龄、有工作、有自己的房子和贷款情况。最终计算的结果g(D,A1)=0.313,g(D,A2)=0.324,g(D,A3)=0.420,g(D,A4)=0.363,所以我们选择A3作为划分的第一个特征,这样我们就可以慢慢建立起一棵树。
3. 决策树的划分依据
决策树的原理不止信息增益这一种,还有其他方法。但是原理都类似,我们就不去举例计算了
- ID3:信息增益,最大的准则
- C4.5:信息增益比,最大的准则
- CART
- 分类树:基尼系数 最小的准则 再sklearn中可以选择划分的默认原则
- 优势:划分更加细致
4. 决策树API
class sklearn.tree.DecisionTreeClassifier(criterion=‘gini’,max_depth=None,random_state=None)
- 决策树分类器
- criterion:默认是‘gini’系数,也可以选择信息增益的熵‘entropy’
- max_depth:树的深度大小
- random_state:随机数种子
5. 案例:鸢尾花分类
def decision_iris():"""决策数对鸢尾花进行分类:return:"""# 划分数据集iris = load_iris()# 划分数据集x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state= 22)# 决策树预估器estimator = DecisionTreeClassifier(criterion= "entropy")estimator.fit(x_train, y_train)# 模型评估y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接比对真实值和预测值:\n", y_test == y_predict)# 方法2:计算准确率score = estimator.score(x_test, y_test)print("准确率为:", score)return None
y_predict:[0 2 1 2 1 1 1 1 1 0 2 1 2 2 0 2 1 1 1 1 0 2 0 1 2 0 1 2 2 1 0 0 1 1 1 0 00]
直接比对真实值和预测值:[ True True True True True True True False True True True TrueTrue True True True True True False True True True True TrueTrue True False True True False True True True True True TrueTrue True]
准确率为: 0.8947368421052632
6. 决策树可视化
保存树的结构到dot文件
sklearn.tree.export_graphviz()
- tree.export_graphviz(estimator,out_file=“./tree.dot”,feature_name=[“,”])
export_graphviz(estimator, out_file= "./tree.dot", feature_names= iris.feature_names)
生成了一个文件之后,我们需要把里面的文本导入到一个网站里面:http://webgraphviz.com/ 导入之后就成功了。

7. 总结
优点:
- 简单的理解和解释,树木可视化
缺点:
- 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合
改进:
- 减枝cart算法
- 随机森林
相关文章:
【机器学习】决策树与分类案例分析
决策树与分类案例分析 文章目录 决策树与分类案例分析1. 认识决策树2. 分类3. 决策树的划分依据4. 决策树API5. 案例:鸢尾花分类6. 决策树可视化7. 总结 1. 认识决策树 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最…...
基于物联网、大数据、云计算、人工智能等技术的智慧工地源码(Java+Spring Cloud +UniApp +MySql)
智慧工地是指利用物联网、大数据、云计算、人工智能等技术手段,为建筑施工现场提供智能硬件及物联网平台的解决方案,实现建筑工地的实时化、可视化、多元化、智慧化、便捷化。智慧工地的建设目标是实现全天候的管理监控,提高施工效率和质量&a…...
Py之pypdf:pypdf的简介、安装、使用方法之详细攻略
Py之pypdf:pypdf的简介、安装、使用方法之详细攻略 目录 pypdf的简介 pypdf的安装 pypdf的使用方法 1、基础用法 pypdf的简介 pypdf是一个免费的、开源的纯python PDF库,能够拆分、合并、裁剪和转换PDF文件的页面。它还可以为PDF文件添加自定义数据…...
谷歌Bard更新!会有哪些体验升级?
今年2月,谷歌的对话机器人Bard在发布会上翻车,遭到了科技圈的群嘲。如今半年过去了,Bard卷土重来,在9月发布了它的重磅更新“扩展插件”,集成了Gmail、Google Docs、Youtube 、Google Drive、Google Maps、Google Flig…...
[SHCTF 2023 校外赛道] reverse
week1 ez_asm 想不到第1题是个汇编,咱也不知道拿啥能弄成c,不过这题也不难,直接能看懂,关键部分。 取出异或0x1e然后保存,再取出-0xa再保存。 .text:0000000000401566 loc_401566: …...
pytorch:Model模块专题
一、说明 关于pytorch使用中,模块扮演重要校色,大部分功能不能密集展现,因此,我们这个文章中,将模块的种种功能详细演示一遍。 二、模块 PyTorch使用模块来表示神经网络。模块包括: 有状态计算的构建块。…...
Spring更加简单的读取和存储对象
前言:在上篇文章中,小编写了一个Spring的创建和使用的相关博客:Spring的创建和使用-CSDN博客,但是,操作/思路比较麻烦,那么本文主要带领大家走进:Spring更加简单的读取和存储对象! 本…...
Webpack5 系列:Babel 的配置
1.前言 本篇将介绍对于项目中 JS 文件的处理。 2.babel-loader 2-1.依赖安装 npm install -D babel-loader babel/core babel/preset-env2-2.Loader 配置 webpack.config.js module: {rules: [{test: /\.?js$/,exclude: /node_modules/,use: {loader: babel-loader}}] }…...
【Spring】DI依赖注入,Lombok以及SpEL
文章目录 1.什么是DI依赖注入2. set方法注入3. ref属性4. 有参构造方法注入5. Lombok6. SpEL 1.什么是DI依赖注入 依赖注入(Dependency Injection,简称DI)是一种设计模式,也是Spring框架的核心概念之一。其基本思想是将程序中的各…...
甘特图组件DHTMLX Gantt用例 - 如何自定义任务、月标记和网格新外观
dhtmlxGantt是用于跨浏览器和跨平台应用程序的功能齐全的Gantt图表。可满足项目管理应用程序的所有需求,是最完善的甘特图图表库。 本文将为大家揭示DHTMLX Gantt自定义的典型用例,包括自定义任务、网格的新外观等,来展示其功能的强大性&…...
auto自动类型推导总结
auto 自动推导的规则很多、很细,当涉及移动语义、模板等复杂的规则时,很容易绕进去。因此,在使用 auto 进行自动推导时,牢记以下几点: auto 推导出的是 “值类型”,不会是 “引用类型”。auto 可以和 cons…...
透视2023,如何看清中国SaaS的未来之路?
导读:什么是更适合中国市场的SaaS道路? 如果用一个关键词概括2023年的SaaS产业,很多人会想到:难。 在过去一年时间内,SaaS产业投融资环境巨变,一级市场投融资笔数和金额骤减。根据IT桔子数据,20…...
分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制)
分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制) 目录 分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制)分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Mat…...
博客系统-项目测试
自动化博客项目 用户注册登录验证效验个人博客列表页博客数量不为 0 博客系统主页写博客 我的博客列表页效验 刚发布的博客的标题和时间查看 文章详情页删除文章效验第一篇博客 不是 "自动化测试" 注销退出到登录页面,用户名密码为空 用户注册 Order(1)Parameterized…...
Inspeckage,动态分析安卓 APP 的 Xposed 模块
前提 我在不久前写过《 APP 接口拦截与参数破解》的博文;最近爬取APP数据时又用到了相关技术,故在此详细描述一下 Inspeckage 的功能。(环境准备本文不再赘述) 功能 在电脑上访问 http://127.0.0.1:8008 就可以看到 inspeckage…...
Windows详细安装和彻底删除RabbitMQ图文流程
RabbiitMQ简介 RabbitMQ是实现了高级消息队列协议(AMQP:Advanced Message Queue Protocol)的开源消息代理软件(亦称面向消息的中间件)。RabbitMQ服务器是用Erlang语言编写的,而聚类和故障转移是构建在开放…...
自定义表单规则
const checkF (rule, value, callback) > { if (!value || value ) { callback(new Error(请输入XXXX)); } else { var params new URLSearchParams(); params.append(参数名, value); axios.post(url, params).then(operation > { if (operation && operatio…...
Spring 中 Bean 的作用域有哪些?Spring 中有哪些方式可以把 Bean 注入到 IOC 容器?
Spring 框架里面的 IOC 容器,可以非常方便的去帮助我们管理应用里面的Bean 对象实例。我们只需要按照 Spring 里面提供的 xml 或者注解等方式去告诉 IOC 容器,哪些 Bean需要被 IOC 容器管理就行了。 生命周期 既然是 Bean 对象实例的管理,那意…...
【01低功耗蓝牙开发】
低功耗蓝牙 低功耗蓝牙背后有个基本的概念:任何事物都有状态。状态可以是任何东西,如温度,电池状态等越简单的系统越便宜,开发更迅速,包含更少的错误,更加强健。一种技术想要获得成功必须降低成本。服务器…...
【Java 进阶篇】Java BeanUtils 使用详解
Java中的BeanUtils是一组用于操作JavaBean的工具,它允许你在不了解JavaBean的具体内部结构的情况下,访问和修改其属性。本文将详细介绍Java BeanUtils的使用,包括如何获取和设置JavaBean的属性,复制属性,以及如何处理嵌…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
