当前位置: 首页 > news >正文

专业外贸制作网站/今日热点新闻头条国内

专业外贸制作网站,今日热点新闻头条国内,视频制作软件免费版,建设银行网站上预览电子回单回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测 目录 回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.RIME-CNN-SVM霜冰优化算…

回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测

目录

    • 回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测 可直接运行Matlab;
2.评价指标包括: R2、MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2021版本及以上。
3.2023年新算法霜冰优化算法RIME优化的参数为:CNN的批处理大小、学习率、正则化系数,能够避免人工选取参数的盲目性,有效提高其预测精度。
4.main.m为主程序,其他为函数文件,无需运行,data为数据,多输入单输出,数据回归预测,输入7个特征,输出1个变量,直接替换Excel数据即可用!注释清晰,适合新手小白~

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测
while it <= Max_iteritRimeFactor = (rand-0.5)*2*cos((pi*it/(Max_iter/10)))*(1-round(it*W/Max_iter)/W);%Parameters of Eq.(3),(4),(5)E =(it/Max_iter)^0.5;%Eq.(6)newRimepop = Rimepop;%Recording new populationsnormalized_rime_rates=normr(Rime_rates);%Parameters of Eq.(7)for i=1:Nfor j=1:dim%Soft-rime search strategyr1=rand();if r1< EnewRimepop(i,j)=Best_rime(1,j)+RimeFactor*((Ub(j)-Lb(j))*rand+Lb(j));%Eq.(3)end%Hard-rime puncture mechanismr2=rand();if r2<normalized_rime_rates(i)newRimepop(i,j)=Best_rime(1,j);%Eq.(7)endendendfor i=1:N%Boundary absorptionFlag4ub=newRimepop(i,:)>ub;Flag4lb=newRimepop(i,:)<lb;newRimepop(i,:)=(newRimepop(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;newRime_rates(1,i)=fobj(newRimepop(i,:));%Positive greedy selection mechanismif newRime_rates(1,i)<Rime_rates(1,i)Rime_rates(1,i) = newRime_rates(1,i);Rimepop(i,:) = newRimepop(i,:);if newRime_rates(1,i)< Best_rime_rateBest_rime_rate=Rime_rates(1,i);Best_rime=Rimepop(i,:);endendend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测

回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测 目录 回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.RIME-CNN-SVM霜冰优化算…...

使用Jaeger进行分布式跟踪:学习如何在服务网格中使用Jaeger来监控和分析请求的跟踪信息

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

添加多个单元对象

开发环境&#xff1a; Windows 11 家庭中文版Microsoft Visual Studio Community 2019VTK-9.3.0.rc0vtk-example参考代码 demo解决问题&#xff1a;不同阶段添加多个单元对象。 定义一个点集和一个单元集合&#xff0c;单元的类型可以是点、三角形、矩形、多边形等基本图形。只…...

十八、模型构建器(ModelBuilder)快速提取城市建成区——批量掩膜提取夜光数据、夜光数据转面、面数据融合、要素转Excel(基于参考比较法)

一、前言 前文实现批量投影栅格、转为整型,接下来重点实现批量提取夜光数据,夜光数据转面、夜光数据面数据融合、要素转Excel。将相关结果转为Excel,接下来就是在Excel中进行阈值的确定,阈值确定无法通过批量操作,除非采用其他方式,但是那样的学习成本较高,对于参考比较…...

HarmonyOS开发:基于http开源一个网络请求库

前言 网络封装的目的&#xff0c;在于简洁&#xff0c;使用起来更加的方便&#xff0c;也易于我们进行相关动作的设置&#xff0c;如果&#xff0c;我们不封装&#xff0c;那么每次请求&#xff0c;就会重复大量的代码逻辑&#xff0c;如下代码&#xff0c;是官方给出的案例&am…...

【杂记】Ubuntu20.04装系统,安装CUDA等

装20.04系统 安装系统的过程中&#xff0c;ROG的B660G主板&#xff0c;即使不关掉Secure boot也是可以的&#xff0c;不会影响正常安装&#xff0c;我这边出现问题的主要原因是使用了Ventoy制作的系统安装盘&#xff0c;导致每次一选择使用U盘的UEFI启动&#xff0c;就会跳回到…...

040-第三代软件开发-全新波形抓取算法

第三代软件开发-全新波形抓取算法 文章目录 第三代软件开发-全新波形抓取算法项目介绍全新波形抓取算法代码小解 关键字&#xff1a; Qt、 Qml、 抓波、 截获、 波形 项目介绍 欢迎来到我们的 QML & C 项目&#xff01;这个项目结合了 QML&#xff08;Qt Meta-Object …...

分享一个基于asp.net的供销社农产品商品销售系统的设计与实现(源码调试 lw开题报告ppt)

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…...

Java基于SpringBoot的线上考试系统

1 摘 要 基于 SpringBoot 的在线考试系统网站&#xff0c;功能模块具有课程管理、成绩管理、教师管理、学生管理、考试管理以及基本信息的管理等&#xff0c;通过将系统分为管理员、授课教师以及学生&#xff0c;从不同的身份角度来对用户提供便利&#xff0c;将科技与教学模式…...

flask socketio 实时传值至html上【需补充实例】

目前版本如下 Flask-Cors 4.0.0 Flask-SocketIO 5.3.6from flask_socketio import SocketIO, emit 跨域问题网上的普通方法无法解决。 参考这篇文章解决 Flask教程(十九)SocketIO - 迷途小书童的Note迷途小书童的Note (xugaoxiang.com) app Flask(__name__) socketio Sock…...

C# Onnx P2PNet 人群检测和计数

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms;namespace Onnx…...

idea提交代码一直提示 log into gitee

解决idea提交代码一直提示 log into gitee问题 文章目录 打开setting->Version control->gitee,删除旧账号&#xff0c;重新配置账号&#xff0c;删除重新登录就好 打开setting->Version control->gitee,删除旧账号&#xff0c;重新配置账号&#xff0c;删除重新登…...

ATECLOUD如何进行电源模块各项性能指标的测试?

ATECLOUD平台进行电源模块各项性能指标的测试是通过以下步骤实现的&#xff1a; 连接测试设备&#xff1a;将测试设备与云计算服务器连接&#xff0c;实现数据采集和远程控制。测试设备包括示波器、电子负载、电源、万用表等&#xff0c;这些设备通过纳米BOX连接到云测试平台上…...

Mysql查询训练——50道题

--1.学生表 Student(SId,Sname,Sage,Ssex) --SId 学生编号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 --2.课程表 Course(CId,Cname,TId) --CId 课程编号,Cname 课程名称,TId 教师编号 --3.教师表 Teacher(TId,Tname) --TId 教师编号,Tname 教师姓名 --4.成绩表 SC(SId…...

学习笔记|正态分布|图形法|偏度和峰度|非参数检验法|《小白爱上SPSS》课程:SPSS第三讲 | 正态分布怎么检验?看这篇文章就够了

目录 学习目的软件版本原始文档为什么要假设它服从正态分布呢?t检验一、图形法1、频数分布直方图解读 2、正态Q-Q图操作解读 3、正态P-P图SPSS实战操作解读 二、偏度和峰度解读&#xff1a; 三、非参数检验法注意事项 四、规范表达五、小结划重点 学习目的 SPSS第三讲 | 正态…...

Android NDK开发详解之ndk-build 脚本

Android NDK开发详解之ndk-build 脚本 内部原理从命令行调用选项可调试 build 与发布 build要求 ndk-build 脚本使用 NDK 的基于 Make 的构建系统构建项目。我们针对 ndk-build 使用的 Android.mk 和 Application.mk 配置提供了更具体的文档。 内部原理 运行 ndk-build 脚本相…...

应用于智慧矿山的皮带跑偏视频分析AI算法

一、引言 随着科技的发展&#xff0c;人工智能技术已经在各个领域得到广泛应用。而在智慧矿山领域&#xff0c;皮带跑偏视频分析是其中一个重要的应用方向。本文将详细介绍皮带跑偏视频分析AI算法的原理&#xff0c;以期为智慧矿山的发展提供有益的参考。 二、算法原理 1. 视…...

vue3 UI组件优化之element-plus按需导入

如果不在意项目打包体积大小&#xff0c;正常来讲element-plus 是这样用的 import ElementPlus from element-plus //引入样式 import "element-plus/dist/index.css";app.use(ElementPlus);但是呢要是项目就用了几个弹窗提示什么的&#xff0c;全局引入包体积很大 …...

如何创建 Spring Boot 项目

如果有pom.xml有插件异常&#xff0c;可以先删除。 maven配置要配置好 然后yaml&#xff0c;再启动就行 server:port: 9991 spring:application:name: demo3参考 如何创建 Spring Boot 项目_创建springboot项目_良月初十♧的博客-CSDN博客...

【经验分享】openGauss容灾集群搭建

gs_sdr命令代码解读 背景 openGauss推出了容灾架构&#xff0c;相比之前的一个集群主从架构&#xff0c;而容灾架构是两个集群间的数据同步。为了更深入了解其原理&#xff0c;本文试图通过阅读gs_sdr命令相关的代码来学习下相关的各种操作。 1.容灾搭建过程可以参考&#xf…...

互联网应用架构的演进(八大架构的演进过程)

文章目录 前言常见概念八大架构演进过程单机架构应用数据分离架构应用服务集群架构读写/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构 前言 博主最近在学中间件&#xff0c;理解互联网应用架构的演进过程&#xff0c;对于理解中间件在整体结构中的定位是十分重…...

ROS自学笔记二十六:导航中激光雷达消息

在ROS导航中&#xff0c;激光雷达&#xff08;Laser Scanner&#xff09;通常被用于感知机器人周围的环境&#xff0c;进行障碍物检测和建图&#xff0c;以支持导航。下面是激光雷达的详细介绍以及一个示例&#xff1a; 激光雷达简介&#xff1a; 激光雷达是一种传感器&#…...

分类模型的评价指标

评价指标&#xff1a; 1、准确率 2、精准率 3、召回率 4、f1-Score 5、auc曲线 在了解评价指标在hi前&#xff0c;首先需要了解一种叫做混淆矩阵的东西 混淆矩阵&#xff1a; 真正例TP&#xff1a;本来正确的&#xff0c;分类到正确的类型 伪正例FP&#xff1a;本来是错误的&a…...

第五章 I/O管理 八、缓冲区管理

目录 一、定义 二、缓冲区的作用 三、单缓冲 1、定义&#xff1a; 2、例子1 3、例子2 四、双缓冲 1、定义&#xff1a; 2、例子1&#xff1a; 3、例子2&#xff1a; 五、单缓冲和双缓冲的区别 六、循环缓冲区 1、定义&#xff1a; 七、缓冲池 1、定义&#xff1a;…...

笔记软件推荐!亲测好用的8款笔记软件!

​在以往的生活中&#xff0c;我们都需要用纸和笔做笔记&#xff0c;但随着时代的发展&#xff0c;许多人已经不再选择用这种传统方式&#xff0c;来记录自己重要的笔记了&#xff0c;他们都选择将重要的笔记用软件记录下来&#xff0c;将笔记保存在电脑里&#xff0c;更不容易…...

MPJQueryWrapper 用法

// 创建QueryWrapper对象MPJQueryWrapper<WebEvaluation> queryWrapper new MPJQueryWrapper<>();// 设置要查询的字段queryWrapper.select("u.nick_name", "u.avatar_url").select("wu.nick_name as relayToUserName", "ta.c…...

50元买来的iPhone手机刷机经验

前段时间&#xff0c;家里的iPad被家人误操作&#xff0c;导致iPad变成不可使用状态。自己折腾了半天&#xff0c;没有找到解决办法。没有办法&#xff0c;只好拿到手机维修店去修理,很快就修理好了.其实也很简单--就是对iPad进行了刷机操作。当然我也看到了刷机的方法。今天&a…...

数据结构学习笔记——链式表示中的双链表及循环单/双链表

一、双链表 &#xff08;一&#xff09;双链表的定义 双链表是在单链表结点上增添了一个指针域prior&#xff0c;指针域prior指向当前结点的前驱结点&#xff0c;即此时链表的每个结点中都有两个指针域prior和next&#xff0c;从而可以很容易通过后继结点找到前驱结点&#x…...

DC电源模块去除输出电源中的高频噪声及杂波

BOSHIDA DC电源模块去除输出电源中的高频噪声及杂波 DC电源模块是电路中常用的部件&#xff0c;用于提供电子元器件的工作电源。然而&#xff0c;在使用DC电源模块的过程中&#xff0c;往往会出现一些问题&#xff0c;比如输出电源中产生的高频噪声和杂波。这些问题不仅会影响…...

【驱动开发】注册字符设备使用gpio设备树节点控制led三盏灯的亮灭

注册字符设备使用gpio设备树节点控制led三盏灯的亮灭 设备树&#xff1a; 头文件&#xff1a; #ifndef __HEAD_H__ #define __HEAD_H__ typedef struct {unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int OD…...