当前位置: 首页 > news >正文

hadoop03-MapReduce【尚硅谷】

大数据学习笔记

MapReduce

一、MapReduce概述

  1. MapReduce是一个分布式运算程序的编程框架,是基于Hadoop的数据分析计算的核心框架

MapReduce处理过程为两个阶段:Map和Reduce。

  • Map负责把一个任务分解成多个任务;
  • Reduce负责把分解后多任务处理的结果汇总。
  1. MapReduce优点
  • MapReduce易于编程
    它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。
  • 良好的扩展性
    当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。
  • 高容错性
    -MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。
  • 适合PB级以上海量数据的离线处理
    可以实现上千台服务器集群开发工作,提供数据处理能力。
  1. MapReduce缺点
  • 不擅长实时计算
  • 不擅长流式计算
    流式计算的输入数据是动态的,而MapReduce的输入数据是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。
  • 不擅长DAG(有向图)计算
    多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。
  1. MapReduce核心编程思想
    1)分布式的运算程序往往需要分成至少2个阶段。
    2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。
    3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。
    4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。
    总结:分析WordCount数据流走向深入理解MapReduce核心思想。
    在这里插入图片描述
  2. 常用序列化类型
    在这里插入图片描述
  3. MapTask的并行度决定机制
    数据块:Block是HDFS物理上把数据分成一块一块。
    数据切分:数据切分只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。(只是在切分时默认按照块大小来切分)
    在这里插入图片描述
  4. FileInputFormat切片源码解析
    1) 程序先找到你数据存储的目录。
    2)开始遍历处理(规划切片)目录下的每一个文件
    3)遍历第一个文件ss.txt
    a) 获取文件大小fs.sizeOf(ss.txt)
    b) 计算切片大小
    computeSplitSize(Math.max(minSize.Math.min(maxSize,blocksize)))=blocksize=128M
    c) 默认情况下,切片大小=blocksize
    d)开始切,形成第一个切片:ss.txt–0:128M 第二个切片ss.txt–128:256M 第三个切片ss.txt–256M:300M(每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)
    e)将切片信息写到一个切片规划文件中
    f)整个切片的核心过程在getSplit()方法中完成
    g) InputSplit只记录了切片的元数据信息,比如起始位置、长度以及所在的节点列表等。
    4)提交切片规划文件到YARN上,YARN上的MrAppMaster就可以根据切片规划文件计算开启MapTask个数。
  5. FileInputFormat切片机制
    1)简单地按照文件的内容长度进行切片
    2)切片大小,默认等于Block大小
    3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
    在这里插入图片描述
    针对不同的文件类型FileInputFormat有不同的文件接口。
  6. CombineTextInputFormat切片机制
    CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。
  7. NLineInputFormat
    NLineInputFormat每个map进程处理的InputSplit不再按Block块去划分,而是按NLineInputFormat指定的行数N来划分。
  8. NLineInputFormat
    可指定分片数。
    在这里插入图片描述

二、自定义inputformat案例

  1. 需求
    在这里插入图片描述
  1. 自定义一个类继承FileInputFormat
    1)重写isSplitable()方法,返回false不可分割
    2)重写createRecordReader(),创建自定义的RecordReader对象,并初始化
  2. 改写RecordReader,实现一次读取一个完整文件封装为KV
    1)采用IO流一次读取一个文件输出到value中,因为设置了不可切片,最终把所有文件都封装到了value中
    2)获取文件路径信息+名称,并设置key
  3. 设置Driver
    1)设置输入的inputFormat
    2)设置输出的outputFormat
    在这里插入图片描述

二、MapReduce详细工作流程

  1. MapReduce详细工作流程(一)
  1. 待处理文本 xx.txt
  2. 提交前要获取参数信息,形成一个任务分配的规划
  3. 提交信息 job(看是yarn 还是本地)
  4. APPmaster接收请求,根据切片来计算出开多少个MapTask
  5. 按照默认切片方式128M为一块,默认按照TextInputFormat读数据
  6. 将kv内容交给Mapper(逻辑运算内容) 业务逻辑
  7. 将数据写到环形缓冲区,包含元数据信息和真实输入的kv,元数据中包含索引、分区信息、key起始、value起始等信息。
  8. 分区、排序。
  9. 将缓冲区文件,溢写到文件,并分区且区内有序。
  10. Merge 归并,将溢写出的文件合并并排序
  11. 合并
    在这里插入图片描述
  1. MapReduce详细工作流程(二)
  1. reduce根据当前分区的个数(MapTask数目)开启reduce Task进程
  2. 下载到ReduceTask本地磁盘,对每个分区做合并并进行归并排序
    14.使用reduce方法 读文件数据
  3. 分组
  4. 默认TextOutputFormat

三、Shuffle机制

  1. Shuffle机制
    Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。
  2. Map方法将 kv数据写入环形缓冲区,默认100M 当达到80%时会向磁盘溢写,(可选流程)将溢写到磁盘的分区进行合并排序
  3. reduce 拷贝maptask处理的分区数据放入内存,如果内存不够写入磁盘,对每一个map来的数据归并排序,按照相同的key执行reduce方法。
    在这里插入图片描述

四、Partition分区

要求将统计结果按照条件输出到不同文件(分区)中去
分区总结:
在这里插入图片描述

五、排序

指定排序规则。

  1. 概述
    排序是MapReduce框架中最重要的操作之一。
    MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
    默认排序是按照字典顺序排序,且实现该排序的方法是快速排序

对应MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序,将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序
对于ReduceTask,它会从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以上传一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序
2. 排序分类
1)部分排序
MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序
2)全排序
最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。
3)辅助排序
在reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部字段比较不相同)的key进入到同一个reduce方法时,可以采用分组排序。
4)二次排序
自定义排序,如果compareTo中的判断条件为两个即为二次排序。

相关文章:

hadoop03-MapReduce【尚硅谷】

大数据学习笔记 MapReduce 一、MapReduce概述 MapReduce是一个分布式运算程序的编程框架,是基于Hadoop的数据分析计算的核心框架。 MapReduce处理过程为两个阶段:Map和Reduce。 Map负责把一个任务分解成多个任务;Reduce负责把分解后多任务处…...

测牛学堂:软件测试python学习之异常处理

python的捕获异常 程序在运行时,如果python解释器遇到一个错误,则会停止程序的执行,并且提示一些错误信息,这就是异常。 程序停止执行并且提示错误信息,称之为抛出异常。 因为程序遇到错误会停止执行,有时…...

图神经网络--图神经网络

图神经网络 图神经网络图神经网络一、PageRank简介1.1互联网的图表示1.2PageRank算法概述1.3求解PageRank二、代码实战2.1引入库2.2加载数据,并构建图2.3计算每个节点PageRank重要度2.4用节点尺寸可视化PageRank值一、PageRank简介 PageRank是Google最早的搜索引擎…...

React useCallback如何使其性能最大化?

前言 React中最让人畅谈的就是其带来的灵活性,可以说写起来非常的舒服。但是也就是它的灵活性太强,往往让我们忽略了很多细节的地方,而就是这些细节的东西能进行优化,减小我们的性能开销。可以说刚学React和工作几年后写React的代…...

长尾关键词使用方法,通过什么方式挖掘长尾关键词?

当你在搜索引擎的搜索栏中输入有关如何使用长尾关键词的查询时,你可能希望有简单快捷的方式出现在搜索结果中,可以帮助你更好地应用seo。 不过,这里要记住一件事:SEO 策略只会为你的网站带来流量;在你的产品良好之前&a…...

【网络编程套接字(一)】

网络编程套接字(一)理解源IP地址和目的IP地址理解源MAC地址和目的MAC地址理解源端口号和目的端口号PORT VS PID认识TCP协议和UDP协议网络字节序socket编程接口socket常见APIsockaddr结构简单的UDP网络程序服务端创建套接字服务端绑定字符串IP VS 整数IP客…...

shell脚本入门

实习的时候第一个月的考核就是如何部署一个云资源,当时走的捷径(杠杠的搜索能力hhhh)找到了一个shell脚本一键部署,后来被leader问起来就如实说了,leader问有没有看懂shell脚本中的逻辑……(没有&#xff0…...

【经典蓝牙】 蓝牙HFP层协议分析

HFP 概述 HFP概念介绍 HFP(Hands-Free Profile), 是蓝牙免提协议, 可以让蓝牙设备对对端蓝牙设备的通话进行控制,例如蓝牙耳机控制手机通话的接听、 挂断、 拒接、 语音拨号等。HFP中蓝牙两端的数据交互是通过定义好的AT指令来通讯的。 &am…...

互联网摸鱼日报(2023-02-26)

互联网摸鱼日报(2023-02-26) InfoQ 热门话题 迁移工具 Air2phin 宣布开源,2 步迁移 Airflow 至 Dolphinscheduler 专访奇安信董国伟博士:目前开源安全的现状并不乐观,但其重要性已成各方共识 专访Brian Behlendorf&…...

关于程序员中年危机的一个真实案例

​ 关于中年危机,网上已经有了各种各样的解读。但是,这两天一个学员跟我简单几句聊天,却触发了对于中年危机的另一种思考。如果你曾经也有点迷茫,或许你可以稍微花几分钟看下这个故事。 一、无奈的故事 ​ 39岁还出来面试&#x…...

【fly-iot飞凡物联】(2):如何从0打造自己的物联网平台,使用开源的技术栈搭建一个高性能的物联网平台,目前在设计阶段。

目录前言1,fly-iot 飞凡物联2,mqtt-broker 服务3, 管理后台产品/设备设计4,数据存储目前使用mysql,消息存储到influxdb中5,规则引擎使用 ekuiper6, 总结和其他的想法前言 本文的原文连接是: https://blog.csdn.net/freewebsys/article/detail…...

Hadoop MapReduce

目录1.1 MapReduce介绍1.2 MapReduce优缺点MapReduce实例进程阶段组成1.3 Hadoop MapReduce官方示例案例:评估圆周率π(PI)的值案例:wordcount单词词频统计1.4 Map阶段执行流程1.5 Reduce阶段执行流程1.6 Shuffle机制1.1 MapReduc…...

时间复杂度和空间复杂度详解

有一堆数据需要排序,A要使用快速排序,B要使用堆排序,A认为自己的代码更高效,B也认为自己的代码更高效,在这种情况下,怎么来判断谁的代码更好一点呢?这时候就有了时间复杂度和空间复杂度。 目录 …...

【C++】面向对象---封装

【C】面向对象—封装 1.封装的意义 封装是C面向对象三大特性之一 封装的意义: 将属性和行为作为一个整体,表现生活的事物将属性和行为加以权限控制 封装意义一: 在设计类的时候,属性和行为写在一起,表现事物 语…...

Docker简介

一、介绍容器虚拟化技术(带环境安装的一种解决方案)打破程序即应用的观念,透过镜像image将作业系统核心除外,运用应用程序所需要的运行环境,由上而下打包,达到应用程序跨平台间的无缝接轨运作。Docker是基于…...

量化学习(一)数据获取

试验环境 windows10 AnacondaPyCharm(小白参考文章:https://coderx.com.cn/?p14) VM中安装MySQL5.7(设置utf8及相应配置优化) 关于复权 小白参考文章:https://zhuanlan.zhihu.com/p/469820288 数据来源 AK…...

java并发编程讨论:锁的选择

java并发编程 线程堆栈大小 单线程的堆栈大小默认为1M,1000个线程内存就占了1G。所以,受制于内存上限,单纯依靠多线程难以支持大量任务并发。 上下文切换开销 ReentrantLock 2个线程交替自增一个共享变量,使用ReentrantLock&…...

大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——ReduceTask工作机制

1、ReduceTask工作机制 ReduceTask工作机制,如下图所示。 (1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直…...

Nginx的介绍、安装与常用命令

前言:传统结构上(如下图所示)我们只会部署一台服务器用来跑服务,在并发量小,用户访问少的情况下基本够用但随着用户访问的越来越多,并发量慢慢增多了,这时候一台服务器已经不能满足我们了,需要我们增加服务…...

less基础

一、less介绍 1、介绍 是css预处理语言,让css更强大,可以实现在less里面定义变量函数运算等 2、less默认浏览器不识别 less转成csS (框架: less/sass 框架的内置了转码less-css) 3、使用语法 1.创建less文件xxx.less 后缀.less 2. less编译成css 再引入…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

云计算——弹性云计算器(ECS)

弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...