当前位置: 首页 > news >正文

偏序关系用分治优化建图:ARC165F

https://atcoder.jp/contests/arc165/tasks/arc165_f

首先可以建图,然后变成求字典序最小的的拓扑排序

然后发现这样复杂度会炸,观察连边的条件是什么:

  • l i < l j l_i<l_j li<lj
  • r i < r j r_i<r_j ri<rj

这是个二维偏序问题,我们考虑用分治来解决

我们按 l l l 排序,本区间内再按 r r r 排序:

在这里插入图片描述

复杂度 O ( n log ⁡ 2 n ) O(n\log^2n) O(nlog2n)

#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL#define debug(...) fprintf(stdout, ##__VA_ARGS__)
#else#define debug(...) void(0)
#endif
//#define int long long
inline int read(){int x=0,f=1;char ch=getchar(); while(ch<'0'||
ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;}
#define Z(x) (x)*(x)
#define pb push_back
#define fi first
#define se second
//srand(time(0));
#define N 5000010
//#define M
//#define mo
struct node {int l, r, id, op; 
}a[N];
int n, m, i, j, k, T;
struct cmp {bool operator () (int x, int y) const {if(x<=n && y>n) return 1; if(y<=n && x>n) return 0; if(x<=n && y<=n) return x>y; if(x>n && y>n) return x>y; }
};
priority_queue<int, vector<int>, cmp >q; 
int c[N], b[N], tot; 
vector<int>G[N]; void cun(int x, int y) {
//	debug("%d -> %d\n", x, y); G[x].pb(y); ++c[y]; 
}void solve(int l, int r) {int i; if(l==r) return ; int mid=(l+r)>>1; solve(l, mid); solve(mid+1, r); for(i=l; i<=mid; ++i) a[i].op=0; for(i=mid+1; i<=r; ++i) a[i].op=1; sort(a+l, a+r+1, [&] (node x, node y) { return x.r<y.r; }); for(i=l; i<=r; ++i) b[i]=++tot; for(i=l; i<=r-1; ++i) cun(b[i], b[i]+1); for(i=l; i<=r; ++i) if(a[i].op==0) cun(a[i].id, b[i]); else cun(b[i], a[i].id); 
}signed main()
{#ifdef LOCALfreopen("in.txt", "r", stdin);freopen("out.txt", "w", stdout);#endif
//	T=read();
//	while(T--) {
//
//	}n=read(); tot=n; for(i=1; i<=n; ++i) a[i].id=i; for(i=1; i<=2*n; ++i) {k=read(); if(!a[k].l) a[k].l=i; else a[k].r=i; }sort(a+1, a+n+1, [] (node x, node y) { return x.l<y.l; }); solve(1, n); for(i=1; i<=tot; ++i) if(!c[i]) q.push(i); while(!q.empty()) {auto u=q.top(); q.pop(); 
//		debug("# %d\n",  u); if(u<=n) printf("%d %d ", u, u); for(auto v : G[u]) if(--c[v]==0) q.push(v); }return 0;
}

相关文章:

偏序关系用分治优化建图:ARC165F

https://atcoder.jp/contests/arc165/tasks/arc165_f 首先可以建图&#xff0c;然后变成求字典序最小的的拓扑排序 然后发现这样复杂度会炸&#xff0c;观察连边的条件是什么&#xff1a; l i < l j l_i<l_j li​<lj​ r i < r j r_i<r_j ri​<rj​ 这是个…...

StripedFly恶意软件:悄无声息运行5年,感染百万设备

导语&#xff1a;最近&#xff0c;俄罗斯网络安全公司Kaspersky发布的一项调查显示&#xff0c;一种名为StripedFly的高级恶意软件伪装成加密货币挖矿程序&#xff0c;悄无声息地在全球范围内运行了超过5年&#xff0c;感染了100万台设备。这是一种复杂的模块化框架&#xff0c…...

Flink SQL DataGen Connector 示例

Flink SQL DataGen Connector 示例 1、概述 使用 Flink SQL DataGen Connector&#xff0c;可以快速地生成符合规则的测试数据&#xff0c;可以在不依赖真实数据的情况下进行开发和测试。 2、使用示例 创建一个名为 “users” 的表&#xff0c;包含 6 个字段&#xff1a;id…...

【监控指标】监控系统-prometheus、grafana。容器化部署。go语言 gin框架、gRPC框架的集成

文章目录 一、监控有哪些指标二、prometheus、grafana架构Prometheus 组件Grafana 组件架构优点 三、安装prometheus和node-exporter1. docker pull镜像2. 启动node-exporter3. 启动prometheus 四、promql基本语法五、grafana的安装和使用1. 新建空文件夹grafana-storage&#…...

时序分解 | Matlab实现PSO-VMD粒子群算法优化变分模态分解时间序列信号分解

时序分解 | Matlab实现PSO-VMD粒子群算法优化变分模态分解时间序列信号分解 目录 时序分解 | Matlab实现PSO-VMD粒子群算法优化变分模态分解时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 PSO-VMD粒子群算法PSO优化VMD变分模态分解 可直接运行 分解效果…...

leetcode 684. 冗余连接

树可以看成是一个连通且 无环 的 无向 图。 给定往一棵 n 个节点 (节点值 1&#xff5e;n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间&#xff0c;且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges &#xff0c;edges[i] …...

yolov8模型训练、目标跟踪

一、准备条件 1.下载yolov8 https://github.com/ultralytics/ultralytics2.安装python https://www.python.org/ftp/python/3.8.0/python-3.8.0-amd64.exe3.安装依赖 进入ultralytics-main&#xff0c;执行&#xff1a; pip install -r requirements.txt pip install -U ul…...

Flink SQL Regular Join 、Interval Join、Temporal Join、Lookup Join 详解

Flink ⽀持⾮常多的数据 Join ⽅式&#xff0c;主要包括以下三种&#xff1a; 动态表&#xff08;流&#xff09;与动态表&#xff08;流&#xff09;的 Join动态表&#xff08;流&#xff09;与外部维表&#xff08;⽐如 Redis&#xff09;的 Join动态表字段的列转⾏&#xf…...

如何在搜索引擎中应用AI大语言模型,提高企业生产力?

人工智能尤其是大型语言模型的应用&#xff0c;重塑了我们与信息交互的方式&#xff0c;也为企业带来了重大的变革。将基于大模型的检索增强生成&#xff08;RAG&#xff09;集成到业务实践中&#xff0c;不仅是一种趋势&#xff0c;更是一种必要。它有助于实现数据驱动型决策&…...

实验七 组合器模式的应用

实验目的 1)掌握组合器模式&#xff08;composite&#xff09;的特点 2 分析具体问题&#xff0c;使用组合器模式进行设计。 实验内容和要求 在例3.3的设计中&#xff0c;添加一个空军大队( Wing)类&#xff0c;该类与Squadron、Group类是平行的&#xff0c;因此应该继承了AirU…...

Springboot实现人脸识别与WebSocket长连接的实现

0.什么是WebSocket,由于普通的请求是间断式发送的,如果要同一时间发生大量的请求,必然导致响应速度慢(因为根据tcp协议要经过三层握手,如果不持续发送,就会导致n多次握手,关闭连接,打开连接) 1.业务需求: 由于我需要使用java来处理视频的问题,视频其实就是图片,相当于每张图片…...

智能安全帽功能-EIS智能防抖摄像头4G定位视频语音气体检测

智能安全帽是一种集成多种智能功能的产品&#xff0c;例如实时定位、语音对讲、健康监测和AI智能预警等。这些丰富的功能能够更好地帮助工人开展工作&#xff0c;并提升安全保障水平。智能安全帽在各个行业中的应用越来越广泛。尤其在工程建设领域&#xff0c;项目管理和工作安…...

TEMU跨境平台珠宝首饰RSL报告如何办理?

首饰或者产品TEMU拼多多跨境平台要求的RSL报告如何办理&#xff1f; 珠宝首饰上架前必须进行RSL Report&#xff08;欧盟禁限用化学物质检测报告&#xff09; 随着人们对珠宝首饰的要求越来越高&#xff0c;为了确保珠宝首饰的安全性&#xff0c;欧盟REACH法规规定&#xff0c…...

51单片机的篮球计分器液晶LCD1602显示( proteus仿真+程序+原理图+PCB+设计报告+讲解视频)

51单片机的篮球计分器液晶LCD1602显示 &#x1f4d1;1.主要功能&#xff1a;&#x1f4d1;讲解视频&#xff1a;&#x1f4d1;2.仿真&#x1f4d1;3. 程序代码&#x1f4d1;4. 原理图&#x1f4d1;5. PCB图&#x1f4d1;6. 设计报告&#x1f4d1;7. 设计资料内容清单&&…...

【NI-DAQmx入门】NI-DAQmx之Python

NI-DAQmx Python GitHub资源&#xff1a; NI-DAQmx Python 文档说明&#xff1a;NI-DAQmx Python Documentation — NI-DAQmx Python API 0.9 documentation nidaqmx支持 CPython 3.7和 PyPy3&#xff0c;需要注意的是多支持USB DAQ和PCI DAQ&#xff0c;cDAQ需要指定…...

YoloV8目标检测与实例分割——目标检测onnx模型推理

一、模型转换 1.onnxruntime ONNX Runtime&#xff08;ONNX Runtime或ORT&#xff09;是一个开源的高性能推理引擎&#xff0c;用于部署和运行机器学习模型。它的设计目标是优化执行使用Open Neural Network Exchange&#xff08;ONNX&#xff09;格式定义的模型&#xff0c;…...

pcigo图床插件的简单开发

1.前言&#xff1a; 如果想写一个图床并且投入使用&#xff0c;那么&#xff0c;接入picgo一定是一个不错的选择。picgo有着windows&#xff0c;mac&#xff0c;linux等多个客户端版本。实用且方便。 2. 开发的准备&#xff1a; 2.0. 需要安装一个node node这里我就不详细说…...

Find My手机保护壳|苹果Find My与手机保护壳结合,智能防丢,全球定位

随着科技水平的快速发展&#xff0c;科技美容这一行业做为新型产业新生而出。时尚IT品牌随着市场的多元化发展。针对手机品牌和功能的增加而呈多样化&#xff0c;将手机保护壳按质地分有PC壳&#xff0c;皮革 &#xff0c;硅胶&#xff0c;布料&#xff0c;硬塑&#xff0c;皮套…...

encode和decode的区别

字节序列和字符串是Python中两种不同的数据类型&#xff0c;它们的主要区别在于表示和处理方式&#xff01; 字节序列&#xff08;Bytes&#xff09;&#xff1a; 字节序列是一种二进制数据类型&#xff0c;它由一系列字节组成。字节是计算机存储信息的基本单位&#xff0c;每…...

建设项目管理中的 5 大预算挑战

为建设项目管理制定可靠、准确的预算是一项艰巨的任务&#xff0c;对于中小型建筑企业来说尤其如此。预算必须精确&#xff0c;同时还要考虑到每项工作的独特性和复杂性。 一项建筑行业相关调查统计了参与施工预算流程的人员所面临的最大挑战&#xff0c;分别是时间、预算、不…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...