当前位置: 首页 > news >正文

【聚类】谱聚类解读、代码示例

【聚类】谱聚类详解、代码示例

文章目录

1. 介绍

谱聚类的基本原理:

  • 把所有数据看成空间中的点,这些点之间可以用变连接起;
  • 距离较远的两个点之间的边权重较低,而距离较近的两个点之间的边权重较高;
  • 通过对所有数据点组成的图进行切图,让切图后的不同的子图间边权重和尽可能小(即距离远),而子图内的边权重和尽可能高(即距离近)。

难点:

  • 如何构建图?
  • 如何切分图?

2. 方法解读

2.1 先验知识

2.1.1 无向权重图

在这里插入图片描述

2.1.2 拉普拉斯矩阵

在这里插入图片描述

2.2 构建图(第一步)

2.2.1 ϵ\epsilonϵ 邻近法

在这里插入图片描述

2.2.2 k 近邻法

在这里插入图片描述

2.2.3 全连接法

比前两种方法,第三种方法所有的点之间的权重值都大于0,因此称之为全连接法。

  • 可以选择不同的核函数来定义边权重,常用的有多项式核函数,高斯核函数和Sigmoid核函数。
  • 最常用的是高斯核函数 RBF
    在这里插入图片描述

2.3 切图(第二步)

在这里插入图片描述
其中Aiˉ\bar {\text{A}_i}AiˉA\text{A}A 的补集。

进而,如何切图使子图内的点权重高,子图之间的点权重低?

2.3.1 最小化 cut (A1, A2, . . . Ak)\text{cut (A1, A2, . . . Ak)}cut (A1, A2, . . . Ak)

一个自然的想法就是最小化 cut (A1, A2, . . . Ak)\text{cut (A1, A2, . . . Ak)}cut (A1, A2, . . . Ak),但是可以发现,这种极小化的切图存在问题,如下图:
在这里插入图片描述

  • 为了避免最小切图导致的切图效果不佳,我们需要对每个子图的规模做出限定;
  • 一般来说,有两种切图方式,第一种是 RatioCut,第二种是 Ncut。

2.3.2 RatioCut 切图

对于每个切图,不仅要考虑最小化 cut (A1, A2, . . . Ak)\text{cut (A1, A2, . . . Ak)}cut (A1, A2, . . . Ak),还要考虑最大化每个子图样本的个数,即最小化 RatioCut函数:
在这里插入图片描述
在这里插入图片描述

  • 这里需要提一下,hih_ihi是正交基,但并不是单位正交基,因为hiThi=1∣Aj∣{h_i}^Th_i = \frac{1}{|A_j|}hiThi=Aj1,而不是1。但是不影响后面结论。

2.3.3 Ncut切图

在这里插入图片描述
在这里插入图片描述

3. 谱聚类流程

3.1 输入与输出

  • 输入:样本集 D=(x1,x2,...,xn)D=(x_1, x_2,...,x_n)D=(x1,x2,...,xn),邻接矩阵的生成方式,降维后的维度k1,聚类方法,聚类后的簇个数k2;
  • 输出: 簇划分C(c1,c2,...,ck2)C ( c_1, c_2,. . .,c_{k2})C(c1,c2,...,ck2)

3.2 一般流程

  • 根据邻接矩阵生成方式构建邻接矩阵W,构建度矩阵D;
  • 计算出拉普拉斯矩阵L;
  • 构建标准化后的拉普拉斯矩阵D−12LD−12D^{-\frac {1}{2}}LD^{-\frac {1}{2}}D21LD21
  • ​计算D−12LD−12D^{-\frac {1}{2}}LD^{-\frac {1}{2}}D21LD21最小的k1个特征值所各自对应的特征向量f;
  • 将各自对应的特征向量f组成的矩阵按行标准化,最终组成n × k1 维矩阵F;
  • 对F 中的每一行作为一个k1维样本,共n个样本,用输入的聚类方法进行聚类,聚类个数为k2;
  • 得到簇划分C(c1,c2,...,ck2)C ( c_1, c_2,. . .,c_{k2})C(c1,c2,...,ck2)

4. 代码演示

import numpy as np 
import matplotlib.pyplot as plt 
from sklearn import cluster, datasets
from sklearn.preprocessing import StandardScalernp.random.seed(0)# 数据构造
n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.2, noise=0.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)data_sets = [(noisy_circles, {"n_clusters": 3}),(noisy_moons, {"n_clusters": 2}), (blobs, {"n_clusters": 3})
]
colors = ["#377eb8", "#ff7f00", "#4daf4a"]
affinity_list = ['rbf', 'nearest_neighbors']plt.figure(figsize=(20, 15))for i_dataset, (dataset, algo_params) in enumerate(data_sets):params = algo_paramsX, y = datasetX = StandardScaler().fit_transform(X)for i_affinity, affinity_strategy in enumerate(affinity_list):spectral = cluster.SpectralClustering(n_clusters=params['n_clusters'],eigen_solver='arpack', affinity=affinity_strategy)spectral.fit(X)y_pred = spectral.labels_.astype(int)y_pred_colors = []for i in y_pred:y_pred_colors.append(colors[i])plt.subplot(3, 4, 4*i_dataset+i_affinity+1)plt.title(affinity_strategy)plt.scatter(X[:, 0], X[:, 1], color=y_pred_colors)# plt.show()
plt.savefig("a.jpg")

在这里插入图片描述

5. 总结

  • 优点:
    • 谱聚类只需要数据之间的邻接矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到;
    • 由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。
  • 缺点:
    • 如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好;
    • 聚类效果依赖于邻接矩阵,不同的邻接矩阵得到的最终聚类效果可能很不同。

6. 参考

【1】https://blog.csdn.net/qq_42735631/article/details/121010760

相关文章:

【聚类】谱聚类解读、代码示例

【聚类】谱聚类详解、代码示例 文章目录【聚类】谱聚类详解、代码示例1. 介绍2. 方法解读2.1 先验知识2.1.1 无向权重图2.1.2 拉普拉斯矩阵2.2 构建图(第一步)2.2.1 ϵ\epsilonϵ 邻近法2.2.2 k 近邻法2.2.3 全连接法2.3 切图(第二步&#xf…...

最牛逼的垃圾回收期ZGC(1),简介

1丶什么是ZGC? ZGC是JDK 11中引入的一种可扩展的、低延迟的垃圾收集器。ZGC最主要的特点是:在非常短的时间内(一般不到10ms),就可以完成一次垃圾回收,而且这个时间是与堆的大小无关的。另外,ZGC支持非常大…...

微服务的Feign到底是什么

Feign是什么 分区是一种数据库优化技术,它可以将大表按照一定的规则分成多个小表,从而提高查询和维护的效率。在分区的过程中,数据库会将数据按照分区规则分配到不同的分区中,并且可以在分区中使用索引和其他优化技术来提高查询效…...

JavaScript 正则表达式

正则表达式(英语:Regular Expression,在代码中常简写为regex、regexp或RE)使用单个字符串来描述、匹配一系列符合某个句法规则的字符串搜索模式。搜索模式可用于文本搜索和文本替换。什么是正则表达式?正则表达式是由一…...

【批处理脚本】-1.15-文件内字符串查找命令find

"><--点击返回「批处理BAT从入门到精通」总目录--> 共7页精讲(列举了所有find的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,EB Tresos,ETAS…)中,…...

【手撕面试题】JavaScript(高频知识点二)

目录 面试官&#xff1a;请你谈谈JS的this指向问题 面试官&#xff1a;说一说call apply bind的作用和区别&#xff1f; 面试官&#xff1a;请你谈谈对事件委托的理解 面试官&#xff1a;说一说promise是什么与使用方法&#xff1f; 面试官&#xff1a;说一说跨域是什么&a…...

Web学习1_HTML

在学校期间学的Web知识忘了一些&#xff0c;很多东西摸棱两可&#xff0c;现重新系统的学习一下。 首先下载安装完vsc后并下载拓展文件live server&#xff08;模拟一个服务器&#xff09; Auto Rename Tag&#xff08;在写网页时&#xff0c;自动对齐前后标签&#xff09;在设…...

华为OD机试真题Java实现【靠谱的车】真题+解题思路+代码(20222023)

靠谱的车 题目 程序员小明打了一辆出租车去上班。出于职业敏感,他注意到这辆出租车的计费表有点问题,总是偏大。 出租车司机解释说他不喜欢数字4,所以改装了计费表,任何数字位置遇到数字4就直接跳过,其余功能都正常。 比如: 23再多一块钱就变为25; 39再多一块钱变…...

【C++入门(下篇)】C++引用,内联函数,auto关键字的学习

前言&#xff1a; 在上一期我们进行了C的初步认识&#xff0c;了解了一下基本的概念还学习了包括&#xff1a;命名空间&#xff0c;输入输出以及缺省参数等相关的知识。今天我们将进一步对C入门知识进行学习&#xff0c;主要还需要大家掌握我们接下来要学习的——引用&#xf…...

基于合作型Stackerlberg博弈的考虑差别定价和风险管理的微网运行策略研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

2023年全国最新保安员精选真题及答案8

百分百题库提供保安员考试试题、保安职业资格考试预测题、保安员考试真题、保安职业资格证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 81.以下各组情形都属于区域巡逻中异常情况的是&#xff08;&#xff09;。 A&#x…...

JavaScript高级程序设计读书分享之6章——MapSet

JavaScript高级程序设计(第4版)读书分享笔记记录 适用于刚入门前端的同志 Map 作为 ECMAScript 6 的新增特性&#xff0c;Map 是一种新的集合类型&#xff0c;为这门语言带来了真正的键/值存储机制。Map 的大多数特性都可以通过 Object 类型实现&#xff0c;但二者之间还是存在…...

改进的 A*算法的路径规划(路径规划+代码+毕业设计)

引言 近年来&#xff0c;随着智能时代的到来&#xff0c;路径规划技术飞快发展&#xff0c;已经形成了一套较为成熟的理论体系。其经典规划算法包括 Dijkstra 算法、A算法、D算法、Field D算法等&#xff0c;然而传统的路径规划算法在复杂的场景的表现并不如人意&#xff0c;例…...

Tina_Linux存储性能参考指南

OpenRemoved_Tina_Linux_存储性能_参考指南 1 概述 1.1 编写目的 介绍TinaLinux 存储性能的测试方法和历史数据&#xff0c;提供参考。 1.2 适用范围 Tina V3.0 及其后续版本。 1.3 相关人员 适用于TinaLinux 平台的客户及相关技术人员。 2 经验性能值 Flash 性能与实…...

NCRE计算机等级考试Python真题(四)

第四套试题1、以下选项中&#xff0c;不属于需求分析阶段的任务是&#xff1a;A.需求规格说明书评审B.确定软件系统的性能需求C.确定软件系统的功能需求D.制定软件集成测试计划正确答案&#xff1a; D2、关于数据流图&#xff08;DFD&#xff09;的描述&#xff0c;以下选项中正…...

LeetCode每周刷题总结2.20-2.26

本栏目记录本人每周写的力扣题的相关学习总结。 虽然开新的栏目都没有完成 70.爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 解题思路&#xff1a; 斐波那契数列递归 class Solution {…...

u盘里删除的文件可以恢复吗?分享解决方法

u盘里删除的文件可以恢复吗?不知道使用过U盘的你&#xff0c;是否遇到过这样的问题呢?其实正常情况下&#xff0c;在电脑中操作u盘&#xff0c;并删除相关的文件&#xff0c;删除的文件是不会经过电脑回收站的。想要找回就需要借助相关的恢复工具才能实现。下面小编给大家分享…...

十、vben框架如何使用table来写报表

在项目开发的过程中&#xff0c;有很多特殊的table样式&#xff0c;有的时候后端会用帆软来写报表&#xff0c;但是有的特殊的报表后端就不能支持实现了&#xff0c;那么前端是如何实现的呢&#xff0c;今天我们就来讲讲。 先上效果图&#xff1a; 本次使用的tsx组件来写的报表…...

jQuery:入门

jQuery 入门 Date: January 19, 2023 目标&#xff1a; 能够说出什么是 jQuery 能够说出 jQuery 的优点 能够简单使用 jQuery 能够说出 DOM 对象和 jQuery 对象的区别 jQuery 概述 JavaScript 库 仓库&#xff1a; 可以把很多东西放到这个仓库里面。找东西只需要到仓库里…...

实例3:树莓派呼吸灯

实例3&#xff1a;树莓派呼吸灯 实验目的 通过背景知识学习&#xff0c;了解digital与analog的区别。通过GPIO对外部LED灯进行呼吸控制&#xff0c;熟悉PWM技术。 实验要求 通过python编程&#xff0c;用GPIO控制LED灯&#xff0c;使之亮度逐渐增大&#xff0c;随后减小&am…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...