Python学习笔记202302
1、numpy.empty
作用:根据给定的维度和数值类型返回一个新的数组,其元素不进行初始化。
用法:numpy.empty(shape, dtype=float, order=‘C’)
2、logging.debug
作用:Python 的日志记录工具,这个模块为应用与库实现了灵活的事件日志系统的函数与类。

图片来源:
https://docs.python.org/zh-cn/3/library/logging.html
https://blog.csdn.net/weixin_41724044/article/details/81784974
3、assert函数
https://docs.python.org/3/reference/simple_stmts.html#assert
作用:Python assert(断言)用于判断一个表达式,在表达式条件为 false 的时候触发异常。断言可以在条件不满足程序运行的情况下直接返回错误,而不必等待程序运行后出现崩溃的情况。
用法:assert expression或assert expression [, arguments]。
如果expression是True,那么什么反应都没有。但是如果expression是False,那么会报错AssertionError。
4、np.where函数
(1)np.where(condition):返回值是满足condition的元素的下标;
(2)np.where(condition, x, y):返回值是一个和condition的shape相同的numpy 数组,当满足条件condition时,返回值中的元素从x中取,否则从y中取。
5、python读取shapefile文件
import shapefile
sh=shapefile.Reader('./shp/shapefile_file.shp')
shapefile_records=sh.records()#records,according to arcgis fileds
6、python 中两个//表示:地板除,即先做除法(/),然后向下取整(floor)。
7、python netcdf: making a copy of all variables and attributes but one
解决方法:https://stackoverflow.com/questions/15141563/python-netcdf-making-a-copy-of-all-variables-and-attributes-but-one
代码:
import netCDF4 as nc
toexclude = ['ExcludeVar1', 'ExcludeVar2']with netCDF4.Dataset("in.nc") as src, netCDF4.Dataset("out.nc", "w") as dst:# copy global attributes all at once via dictionarydst.setncatts(src.__dict__)# copy dimensionsfor name, dimension in src.dimensions.items():dst.createDimension(name, (len(dimension) if not dimension.isunlimited() else None))# copy all file data except for the excludedfor name, variable in src.variables.items():if name not in toexclude:x = dst.createVariable(name, variable.datatype, variable.dimensions)dst[name][:] = src[name][:]# copy variable attributes all at once via dictionarydst[name].setncatts(src[name].__dict__)
或者(测试可用):
import netCDF4 as nc
import numpy as np
toexclude = ["TO_REMOVE"]
with nc.Dataset("orig.nc") as src, nc.Dataset("filtered.nc", "w") as dst:# copy attributesfor name in src.ncattrs():dst.setncattr(name, src.getncattr(name))# copy dimensionsfor name, dimension in src.dimensions.iteritems():dst.createDimension(name, (len(dimension) if not dimension.isunlimited else None))# copy all file data except for the excludedfor name, variable in src.variables.iteritems():if name not in toexclude:x = dst.createVariable(name, variable.datatype, variable.dimensions)dst.variables[name][:] = src.variables[name][:]
代码来源:https://stackoverflow.com/questions/15141563/python-netcdf-making-a-copy-of-all-variables-and-attributes-but-one
Python setattr() 函数:
功能:setattr() 函数对应函数 getattr(),用于设置属性值,该属性不一定是存在的。
用法:setattr(object, name, value)
8、dataframe and series
series 对象转字符串:df[['station']] = pd.Series(df['station'], dtype="string")
筛选满足条件的行:df_new = df.loc[df['station'].str.contains('姓名')]
Python将循环过程中产生的dataframe,按行合并,最终输出一个csv文件:
merge_result = []
for file in os.listdir(csv_path):df = pd.read_csv(os.path.join(csv_path,file),header = None,names=['field1','field2'])merge_result .append(df_new)
df_all = pd.concat(merge_result , axis=0)
9、dataframe输出csv文件,中文出现乱码问题
https://blog.csdn.net/chenpe32cp/article/details/82150074
df.to_csv("result.csv",encoding="utf_8_sig")
相关文章:
Python学习笔记202302
1、numpy.empty 作用:根据给定的维度和数值类型返回一个新的数组,其元素不进行初始化。 用法:numpy.empty(shape, dtypefloat, order‘C’) 2、logging.debug 作用:Python 的日志记录工具,这个模块为应用与库实现了灵…...
2023年大数据面试开胃菜
1、kafka的message包括哪些信息一个Kafka的Message由一个固定长度的header和一个变长的消息体body组成,header部分由一个字节的magic(文件格式)和四个字节的CRC32(用于判断body消息体是否正常)构成。当magic的值为1的时候,会在magic和crc32之间多一个字节…...
优雅的controller层设计
controller层设计 Controller 层逻辑 MVC架构下,我们的web工程结构会分为三层,自下而上是dao层,service层和controller层。controller层为控制层,主要处理外部请求。调用service层,一般情况下,contro…...
同步、通信、死锁
基础概念竞争资源引起两个问题死锁:因资源竞争陷入永远等待的状态饥饿:一个可运行程序由于其他进程总是优先于它,而被调用程序总是无限期地拖延而不能执行进程互斥:若干进程因相互争夺独占型资源而产生的竞争关系进程同步…...
【聚类】谱聚类解读、代码示例
【聚类】谱聚类详解、代码示例 文章目录【聚类】谱聚类详解、代码示例1. 介绍2. 方法解读2.1 先验知识2.1.1 无向权重图2.1.2 拉普拉斯矩阵2.2 构建图(第一步)2.2.1 ϵ\epsilonϵ 邻近法2.2.2 k 近邻法2.2.3 全连接法2.3 切图(第二步…...
最牛逼的垃圾回收期ZGC(1),简介
1丶什么是ZGC? ZGC是JDK 11中引入的一种可扩展的、低延迟的垃圾收集器。ZGC最主要的特点是:在非常短的时间内(一般不到10ms),就可以完成一次垃圾回收,而且这个时间是与堆的大小无关的。另外,ZGC支持非常大…...
微服务的Feign到底是什么
Feign是什么 分区是一种数据库优化技术,它可以将大表按照一定的规则分成多个小表,从而提高查询和维护的效率。在分区的过程中,数据库会将数据按照分区规则分配到不同的分区中,并且可以在分区中使用索引和其他优化技术来提高查询效…...
JavaScript 正则表达式
正则表达式(英语:Regular Expression,在代码中常简写为regex、regexp或RE)使用单个字符串来描述、匹配一系列符合某个句法规则的字符串搜索模式。搜索模式可用于文本搜索和文本替换。什么是正则表达式?正则表达式是由一…...
【批处理脚本】-1.15-文件内字符串查找命令find
"><--点击返回「批处理BAT从入门到精通」总目录--> 共7页精讲(列举了所有find的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,EB Tresos,ETAS…)中,…...
【手撕面试题】JavaScript(高频知识点二)
目录 面试官:请你谈谈JS的this指向问题 面试官:说一说call apply bind的作用和区别? 面试官:请你谈谈对事件委托的理解 面试官:说一说promise是什么与使用方法? 面试官:说一说跨域是什么&a…...
Web学习1_HTML
在学校期间学的Web知识忘了一些,很多东西摸棱两可,现重新系统的学习一下。 首先下载安装完vsc后并下载拓展文件live server(模拟一个服务器) Auto Rename Tag(在写网页时,自动对齐前后标签)在设…...
华为OD机试真题Java实现【靠谱的车】真题+解题思路+代码(20222023)
靠谱的车 题目 程序员小明打了一辆出租车去上班。出于职业敏感,他注意到这辆出租车的计费表有点问题,总是偏大。 出租车司机解释说他不喜欢数字4,所以改装了计费表,任何数字位置遇到数字4就直接跳过,其余功能都正常。 比如: 23再多一块钱就变为25; 39再多一块钱变…...
【C++入门(下篇)】C++引用,内联函数,auto关键字的学习
前言: 在上一期我们进行了C的初步认识,了解了一下基本的概念还学习了包括:命名空间,输入输出以及缺省参数等相关的知识。今天我们将进一步对C入门知识进行学习,主要还需要大家掌握我们接下来要学习的——引用…...
基于合作型Stackerlberg博弈的考虑差别定价和风险管理的微网运行策略研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
2023年全国最新保安员精选真题及答案8
百分百题库提供保安员考试试题、保安职业资格考试预测题、保安员考试真题、保安职业资格证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 81.以下各组情形都属于区域巡逻中异常情况的是()。 A&#x…...
JavaScript高级程序设计读书分享之6章——MapSet
JavaScript高级程序设计(第4版)读书分享笔记记录 适用于刚入门前端的同志 Map 作为 ECMAScript 6 的新增特性,Map 是一种新的集合类型,为这门语言带来了真正的键/值存储机制。Map 的大多数特性都可以通过 Object 类型实现,但二者之间还是存在…...
改进的 A*算法的路径规划(路径规划+代码+毕业设计)
引言 近年来,随着智能时代的到来,路径规划技术飞快发展,已经形成了一套较为成熟的理论体系。其经典规划算法包括 Dijkstra 算法、A算法、D算法、Field D算法等,然而传统的路径规划算法在复杂的场景的表现并不如人意,例…...
Tina_Linux存储性能参考指南
OpenRemoved_Tina_Linux_存储性能_参考指南 1 概述 1.1 编写目的 介绍TinaLinux 存储性能的测试方法和历史数据,提供参考。 1.2 适用范围 Tina V3.0 及其后续版本。 1.3 相关人员 适用于TinaLinux 平台的客户及相关技术人员。 2 经验性能值 Flash 性能与实…...
NCRE计算机等级考试Python真题(四)
第四套试题1、以下选项中,不属于需求分析阶段的任务是:A.需求规格说明书评审B.确定软件系统的性能需求C.确定软件系统的功能需求D.制定软件集成测试计划正确答案: D2、关于数据流图(DFD)的描述,以下选项中正…...
LeetCode每周刷题总结2.20-2.26
本栏目记录本人每周写的力扣题的相关学习总结。 虽然开新的栏目都没有完成 70.爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 解题思路: 斐波那契数列递归 class Solution {…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
