当前位置: 首页 > news >正文

《Python机器学习》基础代码2

👂 逝年 - 夏小虎 - 单曲 - 网易云音乐

目录

👊Matplotlib综合应用:空气质量监测数据的图形化展示

🌼1,AQI时序变化特点

🌼2,AQI分布特征 + 相关性分析

🌼3,优化图形


👊Matplotlib综合应用:空气质量监测数据的图形化展示

🌼1,AQI时序变化特点

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei'] #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=Falsedata=pd.read_excel('北京市空气质量数据.xlsx')
data=data.replace(0,np.NaN) #数据框函数replace()将0替换为缺失值NaNplt.figure(figsize=(10,5)) #plt.figure说明图形一般特征, 此处指定宽10, 高5
plt.plot(data['AQI'],color='black',linestyle='-',linewidth='0.5') #plt.plot绘制折线图,并指定颜色等
plt.axhline(y=data['AQI'].mean(),color='red',linestyle='-',linewidth='0.5',label='AQI总平均值') #plt.axhline在参数y指定位置,画平行于横坐标的直线
data['年']=data['日期'].apply(lambda x:x.year)AQI_mean=data['AQI'].groupby(data['年']).mean().values #分组计算各年AQI平均值
year=['2014年','2015年','2016年','2017年','2018年','2019年'] 
col=['red','blue','green','yellow','purple','brown']
for i in range(6): #for循环绘制多条平行横坐标的直线plt.axhline(y=AQI_mean[i],color=col[i],linestyle='--',linewidth='0.5',label=year[i])plt.title('2014至2019年AQI时间序列折线图') #plt.title()标题
plt.xlabel('年份') #plt.xlabel()横坐标
plt.ylabel('AQI') #plt.ylabel()纵坐标
plt.xlim(xmax=len(data), xmin=1) #plt.xlim横坐标范围
plt.ylim(ymax=data['AQI'].max(),ymin=1) #plt.ylim纵坐标范围
plt.yticks([data['AQI'].mean()],['AQI平均值']) #指定刻度上给出标签 
plt.xticks([1,365,365*2,365*3,365*4,365*5],['2014','2015','2016','2017','2018','2019'])
plt.legend(loc='best') #plt.legend()指定位置显示图例
plt.text(x=list(data['AQI']).index(data['AQI'].max()),y=data['AQI'].max()-20,s='空气质量最差日',color='red') #plt.text()指定行列位置显示文字plt.show() #plt.show()本次绘图结束

🌼2,AQI分布特征 + 相关性分析

本节利用Matplotlib,对空气质量监测数据做如下图形化展示:

  • 线图----年均AQI变化特点
  • 直方图----AQI整体分布特征
  • 散点图----AQI和PM2.5的相关性
  • 饼图----空气质量等级分布特征

具体代码

import warnings #导入warnings模块
warnings.filterwarnings(action='ignore') #忽略警告信息
plt.figure(figsize=(10,5)) #指定宽10, 高5plt.subplot(2,2,1) #绘图区域分为2行2列共4个单元, 下个图在第1个单元展示
plt.plot(AQI_mean, color='black',linestyle='-',linewidth='0.5') #plt.plot()绘制折线图
plt.title('各年AQI均值折线图')
plt.xticks([0,1,2,3,4,5,6],['2014','2015','2016','2017','2018','2019']) #plt.xticks指定刻度给出标签plt.subplot(2,2,2) #绘图区域分2行2列共4个单元, 下个图在第2个单元展示
plt.hist(data['AQI'],bins=20) #plt.hist()绘制直方图, 包含20个柱形条, 将数据分成20组
plt.title('AQI直方图')plt.subplot(2,2,3) 
plt.scatter(data['PM2.5'],data['AQI'],s=0.5,c='green',marker='.') #plt.scatter()绘制散点图,s大小,c颜色,marker形状
plt.title('PM2.5与AQI散点图')
plt.xlabel('PM2.5') #横坐标
plt.ylabel('AQI') #纵坐标plt.subplot(2,2,4)
tmp=pd.value_counts(data['质量等级'],sort=False) #等同: tmp=data['质量等级'].value_counts()
share=tmp/sum(tmp)
labels=tmp.index
explode=[0,0.2,0,0,0,0.2,0]
plt.pie(share, explode=explode,labels=labels,autopct='%3.1f%%',startangle=180,shadow=True) #plt.pie绘制饼图
plt.title('空气质量整体情况饼图')

效果

据图分析

1,折线图:呈快速下降趋势

2,直方图:呈不对成分布

3,散点图:PM2.5和AQI存在一定程度的正相关

4,饼图:空气良占比最高

🌼3,优化图形

2中的四幅图,出现了重叠现象,下面我们进行优化调整

fig, axes=plt.subplots(nrows=2,ncols=2,figsize=(12,10)) #设置宽高,分成2行2列4个单元,结果赋值给fig和axes对象
#fig设置整个图特征,axes对应每个单元格对象
axes[0,0].plot(AQI_mean,color='black',linestyle='-',linewidth=0.5) #axes[0,0]表示第一行第一列单元格
axes[0,0].set_title('各年AQI均值折线图') #设置标题
axes[0,0].set_xticks([0,1,2,3,4,5,6]) #坐标轴标签
axes[0,0].set_xticklabels(['2014','2015','2016','2017','2018','2019']) #坐标刻度
axes[0,1].hist(data['AQI'],bins=20)
axes[0,1].set_title('AQI直方图')
axes[0,1].scatter(data['PM2.5'],data['AQI'],s=0.5,c='green',marker='.')
axes[1,0].set_title('PM2.5与AQI散点图')
axes[1,0].set_xlabel('PM2.5')
axes[1,0].set_ylabel('AQI')
axes[1,1].pie(share,explode=explode,labels=labels,autopct='%3.1f%%',startangle=180,shadow=True)
axes[1,1].set_title('空气质量整体情况饼图')fig.subplots_adjust(hspace=0.5) #.subplots_adjust调整各图形单元行和列之间的距离
fig.subplots_adjust(wspace=0.5)

🌼总结

第2章--Python机器学习基础--告一段落,需要说明的是,Scikit-learn是专门面向机器学习的Python第三方包,可支持数据预处理,数据降维,数据的分类和回归建模,聚类,模型评价和选择等各种机器学习建模应用,它后在后续章节讲到

相关文章:

《Python机器学习》基础代码2

👂 逝年 - 夏小虎 - 单曲 - 网易云音乐 目录 👊Matplotlib综合应用:空气质量监测数据的图形化展示 🌼1,AQI时序变化特点 🌼2,AQI分布特征 相关性分析 🌼3,优化图形…...

如何基于MLServer构建Python机器学习服务

文章目录前言一、数据集二、训练 Scikit-learn 模型三、基于MLSever构建Scikit-learn服务四、测试模型五、训练 XGBoost 模型六、服务多个模型七、测试多个模型的准确性总结参考前言 在过去我们训练模型,往往通过编写flask代码或者容器化我们的模型并在docker中运行…...

9.1 IGMPv1实验

9.4.1 IGMPv1 实验目的 熟悉IGMPv1的应用场景掌握IGMPv1的配置方法实验拓扑 实验拓扑如图9-7所示: 图9-7:IGMPv1 实验步骤 (1)配置IP地址 MCS1的配置 MCS1的IP地址配置如图9-8所示: 图9-8:MCS1的配置 …...

软考高级系统分析师系列论文之十:论实时控制系统与企业信息系统的集成在通信业应用

软考高级系统分析师系列论文之十:论实时控制系统与企业信息系统的集成在通信业应用 一、摘要二、正文三、总结一、摘要 近年来,在应用需求的强大驱动下,我国通信业有了长足的进步。现有通信行业中的许多企业单位,如电信公司或移动集团,其信息系统的主要特征之一是对线路的…...

NIO与零拷贝

目录 一、零拷贝的基本介绍 二、传统IO数据读写的劣势 三、mmap优化 四、sendFile优化 五、 mmap 和 sendFile 的区别 六、零拷贝实战 6.1 传统IO 6.2 NIO中的零拷贝 6.3 运行结果 一、零拷贝的基本介绍 零拷贝是网络编程的关键,很多性能优化都离不开。 在…...

【PAT甲级题解记录】1151 LCA in a Binary Tree (30 分)

【PAT甲级题解记录】1151 LCA in a Binary Tree (30 分) 前言 Problem:1151 LCA in a Binary Tree (30 分) Tags:树的遍历 并查集 LCA Difficulty:剧情模式 想流点汗 想流点血 死而无憾 Address:1151 LCA in a Binary Tree (30 分…...

Android 获取手机语言环境 区分简体和繁体,香港,澳门,台湾繁体

安卓和IOS 系统语言都是准守:ISO 639 ISO 代码表IOS:plus.os.language ios正常,安卓下简体和繁体语言,都是zh安卓获取系统语言方法:Locale.getDefault().language手机切换到繁体(台湾,香港&…...

一文搞懂Python时间序列

Python时间序列1. datetime模块1.1 datetime对象1.2 字符串和datatime的相互转换2. 时间序列基础3. 重采样及频率转换4. 时间序列可视化5. 窗口函数5.1 移动窗口函数5.2 指数加权函数5.3 二元移动窗口函数时间序列(Time Series)是一种重要的结构化数据形…...

GeoServer发布数据进阶

GeoServer发布数据进阶 GeoServer介绍 GeoServer是用于共享地理空间数据的开源服务器。 它专为交互操作性而设计,使用开放标准发布来自任何主要空间数据源的数据。 GeoServer实现了行业标准的 OGC 协议,例如网络要素服务 (WFS)…...

Docker离线部署

Docker离线部署 目录 1、需求说明 2、下载docker安装包 3、上传docker安装包 4、解压docker安装包 5、解压的docker文件夹全部移动至/usr/bin目录 6、将docker注册为系统服务 7、重启生效 8、设置开机自启 9、查看docker版本信息 1、需求说明 大部份公司为了服务安全…...

《数据库系统概论》学习笔记——第七章 数据库设计

教材为数据库系统概论第五版(王珊) 这一章概念比较多。最重点就是7.4节。 7.1 数据库设计概述 数据库设计定义: 数据库设计是指对于一个给定的应用环境,构造(设计)优化的数据库逻辑模式和物理结构&#x…...

【Datawhale图机器学习】半监督节点分类:标签传播和消息传递

半监督节点分类:标签传播和消息传递 半监督节点分类问题的常见解决方法: 特征工程图嵌入表示学习标签传播图神经网络 基于“物以类聚,人以群分”的Homophily假设,讲解了Label Propagation、Relational Classification&#xff…...

【分布式缓存学习篇】Redis数据结构

一、Redis的数据结构 二、String 数据结构 2.1 字符串常用操作 //存入字符串键值对 SET key value //批量存储字符串键值对 MSET key value [key value ...] //存入一个不存在的字符串键值对 SETNX key value //获取一个字符串键值 GET ke…...

【跟着ChatGPT学深度学习】ChatGPT带我入门NLP

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...

RGB888与RGB565颜色

颜色名称RGB888原色RGB565还原色英RGB888[Hex]RGB888_R[Hex]RGB888_G[Hex]RGB888_B[Hex]RGB565[Hex]RGB565_R[Hex]RGB565_G[Hex]RGB565_B[Hex]黑色Black0x0000000000000x0000000昏灰Dimgray0x6969696969690x6B4DD1AD灰色Gray0x8080808080800x8410102010暗灰Dark Gray0xA9A9A9A9…...

常见的域名后缀有哪些?不同域名后缀的含义是什么?

域名发展至今,已演变出各种各样的域名后缀,导致很多网站管理人员在注册域名时不知该如何选择。下面,中科三方针对常见域名后缀种类,以及不同域名后缀的含义做下简单介绍。 什么是域名后缀? 域名是由一串由点分隔开的…...

LevelDB架构介绍以及读、写和压缩流程

LevelDB 基本介绍 是一个key/value存储,key值根据用户指定的comparator排序。 特性 keys 和 values 是任意的字节数组。数据按 key 值排序存储。调用者可以提供一个自定义的比较函数来重写排序顺序。提供基本的 Put(key,value),Get(key),…...

华为OD机试模拟题 用 C++ 实现 - 快递货车(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 最多获得的短信条数(2023.Q1)) 文章目录 最近更新的博客使用说明快递货车题目输入输出示例一输入输出Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单…...

伺服三环控制深层原理解析

我们平时使用的工业伺服,通常是成套伺服,即驱动器和电机型号存在配对关系。 但有些时候,我们要用电机定转子和编码器制作非成套电机,这种时候,我们需要对驱动器进行各种设置才能驱动电机。 此篇文章将通过介绍伺服控制的三环控制原理入手来说明我们调试非成套伺服时需要…...

Cornerstone完整的基于 Web 的医学成像平台(一)

1.简介 Cornerstone是一个开源的基于Web的医学成像平台,它提供了一个易于使用的界面,可以用于加载、显示和处理医学图像。Cornerstone可以用于许多医学图像处理应用程序,例如计算机断层扫描(CT)、磁共振成像&#xff…...

老板让我在Linux中使用traceroute排查服务器网络问题,幸好我收藏了这篇文章!

一、前言 作为网络工程师或者运维工程师,traceroute命令不会陌生,它的作用类似于ping命令,用于诊断网络的连通性,不过traceroute命令输出的命令会比ping命令丰富的多,可以跟踪从源系统到目标系统的路径。 很多工程师…...

一文读懂【数据埋点】

数据埋点是数据采集领域(尤其是用户行为数据采集领域)的术语,指的是针对特定用户行为或事件进行捕获、处理和发送的相关技术及其实施过程。比如用户某个icon点击次数、观看某个视频的时长等等。 数据分析是我们获得需求的来源之一&#xff0c…...

Qt图片定时滚动播放器+透明过渡动画

目录参考结构PicturePlay.promain.cppmyqlabel.h 自定义QLabelmyqlabel.cpp自定义QLabelpictureplay.hpictureplay.cpppictureplay.uistyle.qss效果源码参考 Qt图片浏览器 QT制作一个图片播放器 Qt中自适应的labelpixmap充满窗口后,无法缩小只能放大 Qt的动画类修改…...

手把手带你做一套毕业设计-征程开启

本文是《手把手带你做一套毕业设计》专栏的开篇,文本将会包含我们创作这个专栏的初衷,专栏的主体内容,以及我们专栏的后续规划。关于这套毕业设计的作者呢前端部分由狗哥负责,服务端部分则由天哥操刀。我们力求毕业生或者新手通过…...

万字解析 Linux 中 CPU 利用率是如何算出来的?

在线上服务器观察线上服务运行状态的时候,绝大多数人都是喜欢先用 top 命令看看当前系统的整体 cpu 利用率。例如,随手拿来的一台机器,top 命令显示的利用率信息如下 这个输出结果说简单也简单,说复杂也不是那么容易就能全部搞明白…...

芯驰(E3-gateway)开发板环境搭建

1-Windows下环境配置 可以在Windows上使用命令行或者IAR IDE编译SSDK项目。Windows编译依赖的工具已经包含在 prebuilts/windows 目录中,包括编译器、Python和命令行工具。 1.1.1 CMD SSDK集成 msys 工具,可以在Windows命令行中完成SDK的配置、编译和…...

HiveSql一天一个小技巧:如何巧用分布函数percent_rank()求去掉最大最小值的平均薪水问题

0 问题描述参考链接(3条消息) HiveSql面试题12--如何分析去掉最大最小值的平均薪水(字节跳动)_莫叫石榴姐的博客-CSDN博客文中已经给出了三种解法,这里我们借助于此题,来研究如何用percent_rank()函数求解,简化解题思路…...

【python实现华为OD机试真题】优雅子数组【2023 Q1 | 200分】

题目描述 如果一个数组Q中出现次数最多的元素出现大于等于K次,被称为k-优雅数组,k也可以被称为优雅阈值只。 例如: 数组1,2, 3, 1、2, 3, 1,它是一个3-优雅数组,因为元素1出现次数大于等于3次, 数组[1,2, 3, 1, 2]就不是一一个3-优雅数组,因为其中出现次数最多的元素是1和…...

九种分布式ID解决方案

文章目录背景1、UUID2、数据库自增ID2.1、主键表2.2、ID自增步长设置3、号段模式4、Redis INCR5、雪花算法6、美团(Leaf)7、百度(Uidgenerator)8、滴滴(TinyID)总结比较背景 在复杂的分布式系统中,往往需要对大量的数据进行唯一标识,比如在对一个订单表…...

RocketMQ源码分析

RocketMQ源码深入剖析 1 RocketMQ介绍 RocketMQ 是阿里巴巴集团基于高可用分布式集群技术,自主研发的云正式商用的专业消息中间件,既可为分布式应用系统提供异步解耦和削峰填谷的能力,同时也具备互联网应用所需的海量消息堆积、高吞吐、可靠…...

html5网站管理系统/友情链接怎么交换

除了软件开发套件和工具,我们为开发人员提供了其它产品,以充分利用基于 PowerVR 的设备。今天,我们将重点介绍PVRTune完全版一些新功能。PVRTune 是软件开发套件中最具价值的产品之一,如果您还不了解它,欢迎阅读本篇文…...

word做招聘网站/网站收录优化

🎇Linux: 博客主页:一起去看日落吗分享博主的在Linux中学习到的知识和遇到的问题博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 看似不起波澜的日复一日,一定会在某一天让你看见坚持…...

如果启动浏览器就能直接打开一个常用的网站主页_要怎么做?/网站如何进行seo

2019独角兽企业重金招聘Python工程师标准>>> 简评:别和 Chrome 和 Firefox 约行不,我 Edge 明明更美、屁股更翘、更性感。。。 微软正在测试 Windows 10 的一个更新:警告用户不要安装 Chrome 和 Firefox。是测试人员发现的这个新警…...

柬埔寨做博彩网站/seo整站优化系统

本文深入介绍了 asyncio 是如何通过单线程单进程实现并发效果的。以及异步代码是不是能在所有方面都代替同步代码。 一些例子 第一个例子 假设你需要用电饭煲煮饭,用洗衣机洗衣服,给朋友打电话让他过来吃饭。其中,电饭煲需要30分钟才能把饭煮…...

上海专业网站建设哪家好/seo计费系统

Python2的字符串有两种:str 和 unicode;Python3的字符串也有两种:str 和 bytes。bytes可以是任何二进制数据,文本/图片/视频/音频等等。str就是文本。str与bytes互转b b"example" # bytes objects "example"…...

wap网站下载/日照高端网站建设

很多同学想知道计算机二级理论题如何复习,下面是小编整理的相关内容,希望对大家有所帮助!计算机二级理论题如何复习做理论题在电脑上实验。如果是程序题,把程序输进电脑进行运行,看得出什么结果。若是命令和函数&#…...