当前位置: 首页 > news >正文

【路径规划】基于前向动态规划算法在地形上找到最佳路径(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

汽车必须尽可能靠近目标坐标。旅行时间应尽可能短。汽车一次只能在八个方向上移动一步:左、右、上、下、左上、左下、右上、右下。

成本函数定义为高度差,它始终为正数。在行驶过程中,汽车必须避免爬升轨迹。但是,下降轨迹对汽车也没有好处。因此,下降轨迹并不比平坦轨迹更可取。

【路径规划】基于前向动态规划算法在地形上找到最佳路径,并用Matlab代码实现。

📚2 运行结果

部分代码:

function visualizePath(T, optimalPath)

% Visualize the path on given terrain T.
%

% -------------------------------------------------------------------------

[m, n] = size(T);
l = length(optimalPath);

% Convert back the node cardinal number to the corresponding xyz coordinate.
x = zeros(1, l);
y = zeros(1, l);
z = zeros(1, l);
for i = 1 : l
    x(i) = mod(optimalPath(i) - 1, n) + 1;
    y(i) = abs((optimalPath(i) - 1 - mod(optimalPath(i) - 1, n)) / n) + 1;
    z(i) = 1.0 + T(y(i), x(i));
end

% Draw the optimal path as line.
plot3(x, y, z, 'r', 'LineWidth', 2)

% Draw asterisk symbol (*) at destination nodes.
plot3(x(l), y(l), z(l), '*m', 'LineWidth', 4)

function visualizeTerrain(T)

% Visualize the terrain.
%
% Don't forget to hold the figure when you want to visualize the optimal 
% path using visualizePath function.

% -------------------------------------------------------------------------

[m, n] = size(T);

[X,Y] = meshgrid(1 : n, 1 : m);
surf(X, Y, T(1 : m, 1 : n));

end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Auralius Manurung (2023). Finding an optimal path on the terrain 

🌈4 Matlab代码实现

相关文章:

【路径规划】基于前向动态规划算法在地形上找到最佳路径(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

spring boot maven打包jar包太大,怎么办?这个方法解决你的烦恼

在springboot maven项目中,有两种打包方式,一种是war包,一种是jar,今天我们讲一下jar的打包方式。但是在jar包打包只要我们发现,我们的项目jar太大了,每次上传到服务器的时候非常的慢,接下来我们…...

Spring之AOP理解及使用

文章目录AOP是什么AOPSpring的通知类型1.Before通知2. AfterReturning通知3.AfterThrowing通知4. After通知5. Around通知动态代理JDK动态代理CGLib动态代理动态代理的代码展示AOP使用切面类的配置最后大家好,我是Leo!今天给大家带来的是关于Spring AOP的…...

微信小程序和webview使用postMessage交互

小程序和webview能交互,但是没有你想的那个完美小程序向webview传递参数只能使用url携带参数webview向小程序传递参数可以使用postMessage, 但是注意了,postMessage只会在特定的时机执行,请看官方文档由此可见,如果你想点击webvie…...

pytorch-自动求导机制,构建计算图进行反向传播,需要注意inplace操作导致的报错,梯度属性变化

PyTorch 作为一个深度学习平台,在深度学习任务中比 NumPy 这个科学计算库强在哪里呢?一是 PyTorch 提供了自动求导机制,二是对 GPU 的支持。由此可见,自动求导 (autograd) 是 PyTorch,乃至其他大部分深度学习框架中的重…...

【Project】项目管理软件学习笔记

一、前言使用Project制定项目计划步骤大致如下:以Project2013为例,按照上图步骤指定项目计划。二、实施2.1 创建空白项目点击文件——新建——空白项目,即完成了空白项目的创建,在此我把该项目保存为60mm项目管理.mpp,…...

【算法设计-分治思想】快速幂与龟速乘

文章目录1. 快速幂2. 龟速乘3. 快速幂取模4. 龟速乘取模5. 快速幂取模优化1. 快速幂 算法原理: 计算 311: 311 (35)2 x 335 (32)2 x 332 3 x 3仅需计算 3 次,而非 11 次 计算 310: 310 (35)235 (32)2 x 332 3 x 3仅需计算…...

Kafka(十一) 如何保证数据的不重复和不丢失

数据不丢失 1)从生产端:acks -1,(ack应答机制)从生产端到节点端,当所有isr集合里的节点备份完毕后返回成功; 2)从节点端:每个partition至少需要一个isr节点&#xff0…...

解决树莓派 bullseye (11) 系统无法通过 xrdp 远程连接的问题

我手上有一台树莓派 4B,使用官方镜像烧录器烧录老版本操作系统 buster (10) 时可以正常通过 Windows 远程桌面连接上,但换成最新的 bullseye (11) 系统后却无法正常连接远程桌面。 问题复现: 使用官方镜像烧录器烧录,配置用户名为…...

微信公众号历史作品定向采集

最近有遇到微信公众号历史作品采集的需求,这里做一下记录, 登录自己注册好的的微信公众号后台进入创作界面,点击右上角的引用: 弹出如下界面: 选择查找公众号文章,输入要查找的公众号: 回车: 同时就可以打开F12开始抓包,选择公众号点击进入: appmsg?action=li…...

Vue学习笔记(3)

3.1 计算属性和监视属性 3.1.1 计算属性 计算属性是一种计算值的方式,可以根据其他属性的值来动态地计算新的属性值。计算属性可以缓存计算结果,当依赖的属性发生改变时,才会重新计算。在Vue中,可以使用computed选项来定义计算属…...

Marshmallow 库

文章目录Marshmallow 库介绍使用序列化反序列化参数介绍schema参数fields 参数钩子函数内置验证器Meta 属性Marshmallow 库 介绍 marshmallow是一个用来将复杂的orm对象与python原生数据类型之间相互转换的库,简而言之,就是实现object -> dict&#…...

【BN层的作用】论文阅读 | How Does Batch Normalization Help Optimization?

前言:15年Google提出Batch Normalization,成为深度学习最成功的设计之一,18年MIT团队将原论文中提出的BN层的作用进行了一一反驳,重新揭示BN层的意义 2015年Google团队论文:【here】 2018年MIT团队论文:【h…...

re.sub()用法的详细介绍

一、前言 在字符串数据处理的过程中,正则表达式是我们经常使用到的,python中使用的则是re模块。下面会通过实际案例介绍 re.sub() 的详细用法,该函数主要用于替换字符串中的匹配项。 二、函数原型 首先从源代码来看一下该函数原型&#xf…...

【Python数据挖掘入门】2.2文本分析-中文分词(jieba库cut方法/自定义词典load_userdict/语料库分词)

中文分词就是将一个汉字序列切分成一个一个单独的词。例如: 另外还有停用词的概念,停用词是指在数据处理时,需要过滤掉的某些字或词。 一、jieba库 安装过程见:https://blog.csdn.net/momomuabc/article/details/128198306 ji…...

Meta利用视觉信息来优化3D音频模型,未来将用于AR/VR

我们知道,Meta为了给AR眼镜打造智能助手,专门开发了第一人称视觉模型和数据集。与此同时,该公司也在探索一种将视觉和语音融合的AI感知方案。相比于单纯的语音助手,同时结合视觉和声音数据来感知环境,可进一步增强智能…...

openlayers加载离线地图并实现深色地图

问题背景 我们自己一直使用的openlayergeoserver自己发布的地图,使用的是矢量地图。但是由于政府地图大都使用为天地图,所以需要将geoserver的矢量地图更改为天地图,并且依旧是搭配openlayers来使用。 解决步骤 一:加载离线地图&a…...

socket,tcp,http三者之间的区别和原理

目录 一、OSI模型也称七层网络模型 1、TCP/IP连接 1.1三次握手与四次挥手的简单理解:(面试重点) 1.2面试考题:如果已经建立了连接,但是客户端突然出现故障了怎么办? 1.3 socket、tcp、http三者之间有什…...

红日(vulnstack)1 内网渗透ATTCK实战

环境准备 靶机链接:百度网盘 请输入提取码 提取码:sx22 攻击机系统:kali linux 2022.03 网络配置: win7配置: kali配置: kali 192.168.1.108 192.168.111.129 桥接一块,自定义网卡4 win7 1…...

ik 分词器怎么调用缓存的词库

IK 分词器是一个基于 Java 实现的中文分词器,它支持在分词时调用缓存的词库。 要使用 IK 分词器调用缓存的词库,你需要完成以下步骤: 创建 IK 分词器实例 首先,你需要创建一个 IK 分词器的实例。可以通过以下代码创建一个 IK 分…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

条件运算符

C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...