【路径规划】基于前向动态规划算法在地形上找到最佳路径(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
汽车必须尽可能靠近目标坐标。旅行时间应尽可能短。汽车一次只能在八个方向上移动一步:左、右、上、下、左上、左下、右上、右下。
成本函数定义为高度差,它始终为正数。在行驶过程中,汽车必须避免爬升轨迹。但是,下降轨迹对汽车也没有好处。因此,下降轨迹并不比平坦轨迹更可取。
【路径规划】基于前向动态规划算法在地形上找到最佳路径,并用Matlab代码实现。
📚2 运行结果

部分代码:
function visualizePath(T, optimalPath)
% Visualize the path on given terrain T.
%
% -------------------------------------------------------------------------
[m, n] = size(T);
l = length(optimalPath);
% Convert back the node cardinal number to the corresponding xyz coordinate.
x = zeros(1, l);
y = zeros(1, l);
z = zeros(1, l);
for i = 1 : l
x(i) = mod(optimalPath(i) - 1, n) + 1;
y(i) = abs((optimalPath(i) - 1 - mod(optimalPath(i) - 1, n)) / n) + 1;
z(i) = 1.0 + T(y(i), x(i));
end
% Draw the optimal path as line.
plot3(x, y, z, 'r', 'LineWidth', 2)
% Draw asterisk symbol (*) at destination nodes.
plot3(x(l), y(l), z(l), '*m', 'LineWidth', 4)
function visualizeTerrain(T)
% Visualize the terrain.
%
% Don't forget to hold the figure when you want to visualize the optimal
% path using visualizePath function.
% -------------------------------------------------------------------------
[m, n] = size(T);
[X,Y] = meshgrid(1 : n, 1 : m);
surf(X, Y, T(1 : m, 1 : n));
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]Auralius Manurung (2023). Finding an optimal path on the terrain
🌈4 Matlab代码实现
相关文章:
【路径规划】基于前向动态规划算法在地形上找到最佳路径(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
spring boot maven打包jar包太大,怎么办?这个方法解决你的烦恼
在springboot maven项目中,有两种打包方式,一种是war包,一种是jar,今天我们讲一下jar的打包方式。但是在jar包打包只要我们发现,我们的项目jar太大了,每次上传到服务器的时候非常的慢,接下来我们…...
Spring之AOP理解及使用
文章目录AOP是什么AOPSpring的通知类型1.Before通知2. AfterReturning通知3.AfterThrowing通知4. After通知5. Around通知动态代理JDK动态代理CGLib动态代理动态代理的代码展示AOP使用切面类的配置最后大家好,我是Leo!今天给大家带来的是关于Spring AOP的…...
微信小程序和webview使用postMessage交互
小程序和webview能交互,但是没有你想的那个完美小程序向webview传递参数只能使用url携带参数webview向小程序传递参数可以使用postMessage, 但是注意了,postMessage只会在特定的时机执行,请看官方文档由此可见,如果你想点击webvie…...
pytorch-自动求导机制,构建计算图进行反向传播,需要注意inplace操作导致的报错,梯度属性变化
PyTorch 作为一个深度学习平台,在深度学习任务中比 NumPy 这个科学计算库强在哪里呢?一是 PyTorch 提供了自动求导机制,二是对 GPU 的支持。由此可见,自动求导 (autograd) 是 PyTorch,乃至其他大部分深度学习框架中的重…...
【Project】项目管理软件学习笔记
一、前言使用Project制定项目计划步骤大致如下:以Project2013为例,按照上图步骤指定项目计划。二、实施2.1 创建空白项目点击文件——新建——空白项目,即完成了空白项目的创建,在此我把该项目保存为60mm项目管理.mpp,…...
【算法设计-分治思想】快速幂与龟速乘
文章目录1. 快速幂2. 龟速乘3. 快速幂取模4. 龟速乘取模5. 快速幂取模优化1. 快速幂 算法原理: 计算 311: 311 (35)2 x 335 (32)2 x 332 3 x 3仅需计算 3 次,而非 11 次 计算 310: 310 (35)235 (32)2 x 332 3 x 3仅需计算…...
Kafka(十一) 如何保证数据的不重复和不丢失
数据不丢失 1)从生产端:acks -1,(ack应答机制)从生产端到节点端,当所有isr集合里的节点备份完毕后返回成功; 2)从节点端:每个partition至少需要一个isr节点࿰…...
解决树莓派 bullseye (11) 系统无法通过 xrdp 远程连接的问题
我手上有一台树莓派 4B,使用官方镜像烧录器烧录老版本操作系统 buster (10) 时可以正常通过 Windows 远程桌面连接上,但换成最新的 bullseye (11) 系统后却无法正常连接远程桌面。 问题复现: 使用官方镜像烧录器烧录,配置用户名为…...
微信公众号历史作品定向采集
最近有遇到微信公众号历史作品采集的需求,这里做一下记录, 登录自己注册好的的微信公众号后台进入创作界面,点击右上角的引用: 弹出如下界面: 选择查找公众号文章,输入要查找的公众号: 回车: 同时就可以打开F12开始抓包,选择公众号点击进入: appmsg?action=li…...
Vue学习笔记(3)
3.1 计算属性和监视属性 3.1.1 计算属性 计算属性是一种计算值的方式,可以根据其他属性的值来动态地计算新的属性值。计算属性可以缓存计算结果,当依赖的属性发生改变时,才会重新计算。在Vue中,可以使用computed选项来定义计算属…...
Marshmallow 库
文章目录Marshmallow 库介绍使用序列化反序列化参数介绍schema参数fields 参数钩子函数内置验证器Meta 属性Marshmallow 库 介绍 marshmallow是一个用来将复杂的orm对象与python原生数据类型之间相互转换的库,简而言之,就是实现object -> dict&#…...
【BN层的作用】论文阅读 | How Does Batch Normalization Help Optimization?
前言:15年Google提出Batch Normalization,成为深度学习最成功的设计之一,18年MIT团队将原论文中提出的BN层的作用进行了一一反驳,重新揭示BN层的意义 2015年Google团队论文:【here】 2018年MIT团队论文:【h…...
re.sub()用法的详细介绍
一、前言 在字符串数据处理的过程中,正则表达式是我们经常使用到的,python中使用的则是re模块。下面会通过实际案例介绍 re.sub() 的详细用法,该函数主要用于替换字符串中的匹配项。 二、函数原型 首先从源代码来看一下该函数原型…...
【Python数据挖掘入门】2.2文本分析-中文分词(jieba库cut方法/自定义词典load_userdict/语料库分词)
中文分词就是将一个汉字序列切分成一个一个单独的词。例如: 另外还有停用词的概念,停用词是指在数据处理时,需要过滤掉的某些字或词。 一、jieba库 安装过程见:https://blog.csdn.net/momomuabc/article/details/128198306 ji…...
Meta利用视觉信息来优化3D音频模型,未来将用于AR/VR
我们知道,Meta为了给AR眼镜打造智能助手,专门开发了第一人称视觉模型和数据集。与此同时,该公司也在探索一种将视觉和语音融合的AI感知方案。相比于单纯的语音助手,同时结合视觉和声音数据来感知环境,可进一步增强智能…...
openlayers加载离线地图并实现深色地图
问题背景 我们自己一直使用的openlayergeoserver自己发布的地图,使用的是矢量地图。但是由于政府地图大都使用为天地图,所以需要将geoserver的矢量地图更改为天地图,并且依旧是搭配openlayers来使用。 解决步骤 一:加载离线地图&a…...
socket,tcp,http三者之间的区别和原理
目录 一、OSI模型也称七层网络模型 1、TCP/IP连接 1.1三次握手与四次挥手的简单理解:(面试重点) 1.2面试考题:如果已经建立了连接,但是客户端突然出现故障了怎么办? 1.3 socket、tcp、http三者之间有什…...
红日(vulnstack)1 内网渗透ATTCK实战
环境准备 靶机链接:百度网盘 请输入提取码 提取码:sx22 攻击机系统:kali linux 2022.03 网络配置: win7配置: kali配置: kali 192.168.1.108 192.168.111.129 桥接一块,自定义网卡4 win7 1…...
ik 分词器怎么调用缓存的词库
IK 分词器是一个基于 Java 实现的中文分词器,它支持在分词时调用缓存的词库。 要使用 IK 分词器调用缓存的词库,你需要完成以下步骤: 创建 IK 分词器实例 首先,你需要创建一个 IK 分词器的实例。可以通过以下代码创建一个 IK 分…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
