py并发编程实践-demo
需求
已知条件:appX -请求-> api
多进程实现并发请求api
- 给定app应用列表,请求api核数
from datetime import datetime, timedelta
from multiprocessing import Processclass ProcessTest(object):"""多进程并发请求API,并批量写入django表要点:1)并发;2)读写批量原则,批量读、批量写需求:已知1000个app,通过api获取其CPU核数思路:将app列表 按并发数 分段"""def __init__(self, mon_day):self.mon_day = mon_day@staticmethoddef requests_mon_api(app_id):import randomreturn {app_id: random.randint(100, 5000)}@staticmethoddef get_app_list():import timetime.sleep(2) # 耗时return ["app_"+str(i) for i in range(1000)]def records_to_db(self, records):# django table bulk create to dbprint("[{0}] -------->>>>>>>>>{1}".format(self.mon_day, records))def app_cores_to_db(self, app_id):# api 无限重试。。flag = 0while flag == 0:try:app_records = self.requests_mon_api(app_id)self.records_to_db(app_records)flag = 1except Exception as e:print(e.args, "retry", app_id)def batch_run(self, start, end, app_arr):batch_app = app_arr[start:end + 1]for app in batch_app:self.app_cores_to_db(app)def process_run(self, process_num, process_batch, app_arr):process_arr = []# from django import dbfor i in range(process_num):# db.close_old_connections()p = Process(target=self.batch_run, args=(i * process_batch, (i+1)*process_batch, app_arr))print("第{0}个进程,拉取范围[{1}:{2}],共拉取{3}条记录".format(i+1, i*process_batch, (i+1)*process_batch, process_batch))process_arr.append(p)for p in process_arr:p.start()for p in process_arr:p.join()def to_db(self):app_arr = self.get_app_list()process_num = 15total = len(app_arr)process_batch = total // process_numself.process_run(process_num=process_num, process_batch=process_batch, app_arr=app_arr)remain_index = process_batch * process_num + 1for app_id in app_arr[remain_index:]:try:self.app_cores_to_db(app_id)except Exception as e:print(e.args, app_id, "error")if __name__ == '__main__':day = (datetime.now() + timedelta(days=-0)).strftime("%Y-%m-%d")tp = ProcessTest(mon_day=day)tp.to_db()相关文章:
py并发编程实践-demo
需求 已知条件:appX -请求-> api 多进程实现并发请求api 给定app应用列表,请求api核数 from datetime import datetime, timedelta from multiprocessing import Processclass ProcessTest(object):"""多进程并发请求APIÿ…...
1-2 暴力破解-模拟
模拟:根据题目要求编写代码 可分为:图形排版(根据某种规则输出特定图形)、日期问题、其他模拟 一.图形排版 1.输出梯形(清华大学) 法一:等差数列 分析:每行的星号个数为等差数列2n2…...
机器学习中的Bagging思想
Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下: Bootstrap采样: Bagging的核心思想是通过对原始数据…...
基于PyTorch搭建你的生成对抗性网络
前言 你听说过GANs吗?还是你才刚刚开始学?GANs是2014年由蒙特利尔大学的学生 Ian Goodfellow 博士首次提出的。GANs最常见的例子是生成图像。有一个网站包含了不存在的人的面孔,便是一个常见的GANs应用示例。也是我们将要在本文中进行分享的…...
ROS话题(Topic)通信:自定义msg - 例程与讲解
在 ROS 通信协议中,数据是以约定好的结构传输的,即数据类型,比如Topic使用的msg,Service使用的srv,ROS 中的 std_msgs 封装了一些原生的数据类型,比如:Bool、Char、Float32、Int64、String等&am…...
【Vue配置项】 computed计算属性 | watch侦听属性
目录 前言 computed计算属性 什么是计算属性? Vue的原有属性是什么? 得到的全新的属性是什么? 计算属性怎么用? 计算属性的作用是什么? 为什么说代码执行率高了? computed计算属性中的this指向 co…...
linux 查看命令使用说明
查看命令的使用说明的命令有三种,但并不是每个命令都可以使用这三种命令去查看某个命令的使用说明,如果一种不行就使用另外一种试一试。 1.whatis 命令 概括命令的作用 2.命令 --help 命令的使用格式和选项的作用 3.man 命令 命令的作用和选项的详细…...
ceph修复pg inconsistent( scrub errors)
异常情况 1、收到异常情况如下: OSD_SCRUB_ERRORS 12 scrub errors PG_DAMAGED Possible data damage: 1 pg inconsistentpg 6.d is activeremappedinconsistentbackfill_wait, acting [5,7,4]2、查看详细信息 登录后复制 #ceph health detail HEALTH_ERR 12 scrub errors…...
【论文精读】VOYAGER: An Open-Ended Embodied Agent with Large Language Models
Understanding LSTM Networks 前言Abstract1 Introduction2 Method2.1 Automatic Curriculum2.2 Skill Library2.3 Iterative Prompting Mechanism 3 Experiments3.1 Experimental Setup3.2 Baselines3.3 Evaluation Results3.4 Ablation Studies3.5 Multimodal Feedback from …...
Linux安装DMETL5与卸载
Linux安装DMETL5与卸载 环境介绍1 DM8数据库配置1.1 DM8数据库安装1.2 初始化达梦数据库1.3 创建DMETL使用的数据库用户 2 配置DMETL52.1 解压DMETL5安装包2.2 安装调度器2.3 安装执行器2.4 安装管理器2.5 启动dmetl5 调度器2.6 启动dmetl5 执行器2.7 启动dmetl5 管理器2.8 查看…...
Office Word 中的宏
Office Word 中的宏 简介宏的使用将自定义创建的宏放入文档标题栏中的“自定义快速访问工具栏”插入指定格式、内容的字符选中word中的指定文字查找word中的指定文字A,并替换为指定文字B插入文本框并向内插入文字word 表格中的宏操作遍历表格中的所有内容批量设置表…...
qt中d指针
在Qt中,d指针是一种常见的设计模式,也称为"PIMPL"(Private Implementation)或者"Opaque Pointer"。它主要用于隐藏类的实现细节,提供了一种封装和隔离的方式,以便在不影响公共接口的情…...
交易者最看重什么?anzo Capital这点最重要!
交易者最看重什么?有人会说技术,有人会说交易策略,有人会说盈利,但anzo Capital认为Vishal 最看重的应该是眼睛吧! 29岁的Vishal Agraval在9年前因某种原因失去了视力,然而,他的失明并未能阻…...
window 搭建 MQTT 服务器并使用
1. 下载 安装 mosquitto 下载地址: http://mosquitto.org/files/binary/ win 使用 win32 看自己电脑下载相应版本: 一直安装: 记住安装路径:C:\Program Files\mosquitto 修改配置文件: allow_anonymous false 设置…...
Prometheus+Ansible+Consul实现服务发现
一、简介 1、Consul简介 Consul 是基于 GO 语言开发的开源工具,主要面向分布式,服务化的系统提供服务注册、服务发现和配置管理的功能。Consul 提供服务注册/发现、健康检查、Key/Value存储、多数据中心和分布式一致性保证等功能。 在没有使用 consul 服…...
【原创】java+swing+mysql校园活动管理系统设计与实现
前言: 本文介绍了一个校园活动管理系统的设计与实现。该系统基于JavaSwing技术,采用C/S架构,使用Java语言开发,以MySQL作为数据库。系统实现了活动发布、活动报名、活动列表查看等功能,方便了校园活动的发布和管理&am…...
vscode中vue项目引入的组件的颜色没区分解决办法
vscode中vue项目引入的组件的颜色没区分解决办法 图中引入组件和其他标签颜色一样没有区分,让开发者不易区分,很蓝瘦 这个就很直观,解决办法就是你当前的vscode版本不对,你得去找找其他版本,我的解决办法就是去官网历…...
uniapp: 实现pdf预览功能
目录 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 2.2 解决需求 2.2.1 方法一 2.2.2 方法二 第三章 资源下载 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 前端需要利用后端传的pdf临时路径实现H5端以及app端的pdf预览首先我们别像pc端一样&#…...
【Pytorch笔记】7.torch.nn (Convolution Layers)
我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。 先从最简单的,都有哪些层开始学起。 Convolution Layers -…...
MySQL内部组件与日志详解
MySQL的内部组件结构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层主要包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等)&am…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)
目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 编辑编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
