使用cmake在win10编译yolov5+tensorRT+cuda+cudnn+protobuf代码进行混合编译
这里进行之前需要把protobuf在win10下编译,可以参考这篇文章
从Linux下载下来的工程代码,这里建议直接使用vs系列打开不要用vscode打开,vscode对win下的cmake不友好,主要体现在报错机制无法直接定位,题主的环境是vs2022通过cmake可以快速的进行定位bug,并可以快速解决(vscode 的cmake在Linux下还是比较友好的,但是通常如果在Linux下为什么 不研究makefile呢?),至于如何使用vs2022打开cmake工程,因为还没cmake文件,先创建一个空CMakeLists.txt, 直接在CMakeLists.txt文件夹右击选择vs2022打开,这样vs2022会自动打开cmake文件,也可以参考这篇文章,打开后先把CMakeLists文件的基本信息填上:
cmake_minimum_required(VERSION 3.10.0)
project(yolov5_detect_test VERSION 0.1.0)# 设置语言版本
enable_language(CXX CUDA)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CUDA_STANDARD 11)# 加入opencv库
set(OpenCV_DIR "F:\\install\\thirdparty\\opencv\\build\\x64\\vc15\\lib")
find_package(OpenCV REQUIRED)
message(STATUS ${OpenCV_LIBS})# 遍历工程源码
file(GLOB_RECURSE SRC_LIST DEPENDS "./src/*.cpp","src/*.cu","src/*.c")# 引入外部的头文件
include_directories("./src")
include_directories("F:\\install\\thirdparty\\protobuf3.11.4\\include")
include_directories("C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.7\\include")
include_directories("F:\\install\\thirdparty\\TensorRT-8.5.1.7.Windows10.x86_64.cuda-11.8.cudnn8.6\\TensorRT-8.5.1.7\\include")# 引入外部的lib库文件
link_directories("F:\\install\\thirdparty\\TensorRT-8.5.1.7.Windows10.x86_64.cuda-11.8.cudnn8.6\\TensorRT-8.5.1.7\\lib")
link_directories("C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.7\\lib\\x64")
link_directories("F:\\install\\thirdparty\\protobuf3.11.4\\lib")add_executable(yolov5_detect_test ${SRC_LIST})target_link_libraries(yolov5_detect_test libprotobufd cuda cudart nvinfer ${OpenCV_LIBS})
接下来编译:

添加头文件#include <string>,代码格式问题是通过在vs中文件另保存,然后修改格式如下:

保存好以后重新编译,会发现这个文件的没有错误了,但是main文件有大量的类似错误,其实也是编码格式文件:

对main文件进行编码改变后,重新编译发现没有编码问题了,现在是缺少函数:

这个问题是win中需要包含#include <shlwapi.h>头文件即可,然后重新编译,结果如下:

这里提醒缺少.lib文件,说明没有找到,这里需要注意的是我这里工程是Debug模型,因此protobuf的库也需要debug的库,这里需要把一个import_lib.cpp文件加入即可,然后重新编译:
#if defined(_WIN32)
# define U_OS_WINDOWS
#else
# define U_OS_LINUX
#endif#ifdef U_OS_WINDOWS
#if defined(_DEBUG)
# pragma comment(lib, "opencv_world420d.lib")
#else
# pragma comment(lib, "opencv_world420.lib")
#endif//导入cuda
#pragma comment(lib, "cuda.lib")
#pragma comment(lib, "cudart.lib")
#pragma comment(lib, "cublas.lib")
#pragma comment(lib, "cudnn.lib")//#pragma comment(lib, "Shlwapi.lib")//导入tensorRT
#pragma comment(lib, "nvinfer.lib")
#pragma comment(lib, "nvinfer_plugin.lib")
//#pragma comment(lib, "nvparsers.lib")#if defined(_DEBUG)
#pragma comment(lib, "libprotobufd.lib")
#else
#pragma comment(lib, "libprotobuf.lib")
#endif#ifdef HAS_PYTHON
#pragma comment(lib, "python37.lib")
#endif#endif // U_OS_WINDOWS结果如下,发现还是保存,其实是因为缺少一个库和使用了protobuf的dll,需要消除即可,解决方法如下图,分别在import_lib.cpp中引入库,在cmake中加入消除警告即可,下图的那个放开的应该是#pragma comment(lib,"Shlwapi.lib"),画错了,然后重新编译:

保存编译即可通过:

调试的情况下,cmake我研究发现不能自动调用其他地方的dll,但是内我又不想每个工程都copydll,这里做法是把那个exe可执行文件单独送到一个我文件夹,把对于的dll也拷贝到这个文件上即可进行调试了。具体如下:



附上完整的cmake:
cmake_minimum_required(VERSION 3.10.0)
project(yolov5_detect_test VERSION 0.1.0)# 设置语言版本
enable_language(CXX CUDA)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CUDA_STANDARD 11)# 设置可执行文件目录
SET(EXECUTABLE_OUTPUT_PATH "F:\\BaiduNetdiskDownload\\tensorrt-integrate\\tensorrt-integrate\\tensorrt-integrate\\run")
# 消除警告
add_definitions(-w)
add_definitions(-DPROTOBUF_USE_DLLS) # 解决# 加入opencv库
set(OpenCV_DIR "F:\\install\\thirdparty\\opencv\\build\\x64\\vc15\\lib")
find_package(OpenCV REQUIRED)
message(STATUS ${OpenCV_LIBS})# 遍历工程源码
file(GLOB_RECURSE SRC_LIST DEPENDS "./src/*.cpp","src/*.cu","src/*.c")# 引入外部的头文件
include_directories("./src")
include_directories("F:\\install\\thirdparty\\protobuf3.11.4\\x64-Debug\\include")
include_directories("C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.7\\include")
include_directories("F:\\install\\thirdparty\\TensorRT-8.5.1.7.Windows10.x86_64.cuda-11.8.cudnn8.6\\TensorRT-8.5.1.7\\include")# 引入外部的lib库文件
link_directories("F:\\install\\thirdparty\\TensorRT-8.5.1.7.Windows10.x86_64.cuda-11.8.cudnn8.6\\TensorRT-8.5.1.7\\lib")
link_directories("C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v11.7\\lib\\x64")
link_directories("F:\\install\\thirdparty\\protobuf3.11.4\\x64-Debug\\lib")add_executable(yolov5_detect_test ${SRC_LIST})target_link_libraries(yolov5_detect_test libprotobufd cuda cudart nvinfer ${OpenCV_LIBS})
相关文章:
使用cmake在win10编译yolov5+tensorRT+cuda+cudnn+protobuf代码进行混合编译
这里进行之前需要把protobuf在win10下编译,可以参考这篇文章从Linux下载下来的工程代码,这里建议直接使用vs系列打开不要用vscode打开,vscode对win下的cmake不友好,主要体现在报错机制无法直接定位,题主的环境是vs2022…...
《C++ Primer Plus》第17章:输入、输出和文件(7)
编程练习 编写一个程序计算输入流中第一个$之前的字符数目,并将$留在输入流中。 #include<iostream>int main() {int ct 0;while(std::cin.peek()!$){ct;std::cin.get();}std::cout << "num: " << ct << std::endl;return 0; }答…...
PGLBox 超大规模 GPU 端对端图学习训练框架正式发布
作者 | PGLBox项目组 导读 PGLBox是百度研发的基于GPU的大规模图模型训练框架,支持数百亿节点和边的图模型全GPU训练,已在百度广泛部署。相比业界主流的分布式 CPU 解决方案,PGLBox 具有超高性能、超大规模、算法丰富、灵活易用、落地广泛等优…...
sql-labs-Less1
靶场搭建好了,访问题目路径 http://127.0.0.1/sqli-labs-master/Less-1/ 我最开始在做sql-labs靶场的时候很迷茫,不知道最后到底要得到些什么,而现在我很清楚,sql注入可以获取数据库中的信息,而获取信息就是我们的目标…...
又一个国内类ChatGPT模型?【秘塔科技上线自研LLM大模型「对话写作猫」】
又一个国内类ChatGPT模型?【秘塔科技上线自研LLM大模型「对话写作猫」】 说个题外话,今天一大早就收到了Biying的邮件。前段时间不是申请了New Biying的内测吗?下午可以尝试一下玩一会儿。如果体验感还不错或者还有很多bug,那我到…...
卷麻了,00后测试用例写的比我还好,简直无地自容......
经常看到无论是刚入职场的新人,还是工作了一段时间的老人,都会对编写测试用例感到困扰?例如: 如何编写测试用例? 作为一个测试新人,刚开始接触测试,对于怎么写测试用例很是头疼,无法…...
动态网页的核心——JSP
文章目录1,JSP 概述2,JSP 小案例2.1 搭建环境2.2 导入 JSP 依赖2.3 创建 jsp 页面2.4 编写代码2.5 测试3,JSP 原理4,JSP 总结4.1 JSP的 缺点4.2技术的发展历程4.3JSP的必要性最后说一句1,JSP 概述 JSP(全称…...
RK3588平台开发系列讲解(系统篇)init.d介绍
平台内核版本安卓版本RK3588Linux 5.10Android 12文章目录 一、Linux启动简介二、sysvinit配置三、inid.d介绍沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇介绍init.d相关知识。 一、Linux启动简介 Linux用户空间启动时,第一个会启动init进程,用来引导启动其…...
taobao.user.buyer.get( 查询买家信息API )
¥开放平台基础API必须用户授权 查询买家信息API,只能买家类应用调用。 公共参数 请求地址: HTTP地址 http://gw.api.taobao.com/router/rest 公共请求参数: 公共响应参数: 请求参数 响应参数 点击获取key和secret 请求示例 TaobaoClient client new…...
python学生信息管理系统
wx供重浩:创享日记 对话框发送:python学生信息 免费获取完整源码源文件配置教程说明等 在IDLE中运行《学生信息管理系统》即可进入如图1所示的系统主界面。在该界面中可以选择要使用功能对应的菜单进行不同的操作。在选择功能菜单时,有两种方…...
【微信小程序】-- WXML 模板语法 - 条件渲染 -- wx:if hidden (十一)
💌 所属专栏:【微信小程序开发教程】 😀 作 者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…...
2023上半年软考,广州/东莞/深圳/江苏报班是明智的选择
软考是全国计算机技术与软件专业技术资格(水平)考试(简称软考)项目,是由国家人力资源和社会保障部、工业和信息化部共同组织的国家级考试,既属于国家职业资格考试,又是职称资格考试。 系统集成…...
C++修炼之练气期一层——命名空间
目录 1.引例 2.命名空间的定义 3.命名空间的使用 4.命名空间使用注意事项 1.引例 #include <stdio.h> #include <stdlib.h>int rand 10;int main() {printf("%d\n", rand);return 0; } 当我们用C语言写下这样的代码,看着并没有什么语法…...
matplotlib综合学习
1.arange函数arange函数需要三个参数,分别为起始点、终止点、采样间隔。采样间隔默认值为1看例子: import numpy as np #import matplotlib.pyplot as plt xnp.arange(-5,5,1) print(x)2.绘制sin(x)曲线import numpy as np import matplotlib.pyplot as …...
IIS .Net Core 413错误和Request body too large解决办法
错误描述图片比较大时,在前端上传就报413错误。根本到不了后端。在网上看到这个文章比较有用。https://blog.csdn.net/wstever/article/details/1288707421、修改网站Web.config配置文件加入下面这段配置<?xmlversion"1.0" encoding"utf-8"…...
Spring Boot数据访问—(springboot 多数据源)—官方原版
Spring Boot 包含许多用于处理数据源的启动器,本文回答与执行此操作相关的问题。一、配置自定义数据源要配置自己的DataSource,请在配置中定义该类型的Bean。Spring Boot在任何需要的地方重用DataSource,包括数据库初始化。如果需要外部化某些…...
高燃!GitHub上标星75k+超牛的Java面试突击版
前言不论是校招还是社招都避免不了各种面试。笔试,如何去准备这些东西就显得格外重要。不论是笔试还是面试都是有章可循的,我这个有章可循‘说的意思只是说应对技术面试是可以提前准备。运筹帷幄之后,决胜千里之外!不打毫无准备的仗,我觉得大…...
grid宫格布局新手快捷上手-f
前言 grid 网上有很多,但都是大而全的,感觉新人上手很吃力,本文仅以最快捷的方式进行介绍,如何使用grid宫格布局 本文是新人上手,若想了解更多grid布局,请阅读其他文章 使用 声明布局 display: grid;声…...
面试必刷101 Java题解 -- part 3
part1 – https://blog.csdn.net/qq_41080854/article/details/129204480 part2 – https://blog.csdn.net/qq_41080854/article/details/129224785 面试必刷101 Java题解 -- part 3动规五部曲71、斐波那契数列72、跳台阶73、最小花费爬楼梯74、最长公共子序列(二)75、最长公共…...
干货满满!MES的简介和运用
导读 谈及MES必须先谈生产,生产体系模型如图所示,涉及人、财、物、信息等资源,产、供、销等环节,以及供应商、客户、合作伙伴等。 其中,生产管理是通过对生产系统的战略计划、组织、指挥、实施、协调、控制等活动&…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Java 8 Stream API 入门到实践详解
一、告别 for 循环! 传统痛点: Java 8 之前,集合操作离不开冗长的 for 循环和匿名类。例如,过滤列表中的偶数: List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
