当前位置: 首页 > news >正文

处理BOP数据集,将其和COCO数据集结合

处理BOP数据集,将其和COCO数据集结合

BOP

取消映射关系,并自增80
取消文件名的images前缀

import os
import json
from tqdm import tqdm
import argparseparser = argparse.ArgumentParser()
parser.add_argument('--json_path', default='H:/Dataset/COCO/train_pbr/000002/coco/annotations/scene_gt_coco.json', type=str,help="input: coco format(json)")
parser.add_argument('--save_path', default='H:/Dataset/COCO/train_pbr/000002/coco/labels', type=str,help="specify where to save the output dir of labels")
arg = parser.parse_args()def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = box[0] + box[2] / 2.0y = box[1] + box[3] / 2.0w = box[2]h = box[3]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)if __name__ == '__main__':json_file = arg.json_path  # COCO Object Instance 类型的标注ana_txt_save_path = arg.save_path  # 保存的路径data = json.load(open(json_file, 'r'))if not os.path.exists(ana_txt_save_path):os.makedirs(ana_txt_save_path)id_map = {}  # coco数据集的id不连续!重新映射一下再输出!for i, category in enumerate(data['categories']):id_map[category['id']] = i# 通过事先建表来降低时间复杂度max_id = 0for img in data['images']:max_id = max(max_id, img['id'])# 注意这里不能写作 [[]]*(max_id+1),否则列表内的空列表共享地址img_ann_dict = [[] for i in range(max_id + 1)]for i, ann in enumerate(data['annotations']):img_ann_dict[ann['image_id']].append(i)for img in tqdm(data['images']):filename = img["file_name"]img_width = img["width"]img_height = img["height"]img_id = img["id"]head, tail = os.path.splitext(filename)head2 = head.split("/")head3 = head2[1]ana_txt_name = head3 + ".txt"  # 对应的txt名字,与jpg一致f_txt = open(os.path.join(ana_txt_save_path, ana_txt_name), 'w')'''for ann in data['annotations']:if ann['image_id'] == img_id:box = convert((img_width, img_height), ann["bbox"])f_txt.write("%s %s %s %s %s\n" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))'''# 这里可以直接查表而无需重复遍历for ann_id in img_ann_dict[img_id]:ann = data['annotations'][ann_id]box = convert((img_width, img_height), ann["bbox"])#print(box[0],box[1],box[2],box[3])f_txt.write("%s %s %s %s %s\n" % (ann["category_id"]+80, box[0], box[1], box[2], box[3]))f_txt.close()

在这里插入图片描述

相关文章:

处理BOP数据集,将其和COCO数据集结合

处理BOP数据集,将其和COCO数据集结合 BOP 取消映射关系,并自增80 取消文件名的images前缀 import os import json from tqdm import tqdm import argparseparser argparse.ArgumentParser() parser.add_argument(--json_path, defaultH:/Dataset/COCO…...

跟李沐学AI-深度学习课程05线性代数

线性代数 🏷sec_linear-algebra 在介绍完如何存储和操作数据后,接下来将简要地回顾一下部分基本线性代数内容。 这些内容有助于读者了解和实现本书中介绍的大多数模型。 本节将介绍线性代数中的基本数学对象、算术和运算,并用数学符号和相应…...

电子病历编辑器源码(Springboot+原生HTML)

一、系统简介 本系统主要面向医院医生、护士,提供对住院病人的电子病历书写、保存、修改、打印等功能。本系统基于云端SaaS服务方式,通过浏览器方式访问和使用系统功能,提供电子病历在线制作、管理和使用的一体化电子病历解决方案&#xff0c…...

Qt的日志输出

在Qt中,一般习惯使用qDebug信息进行输出和打印调试信息到console或者文件中,在qDebug中,也有一些小技巧,可以帮助我们更好的使用qDebug打印日志记录,本文分享了qDebug使用的一些小技巧。 1. 打印出文件名、行号、调用函…...

基于热交换算法优化概率神经网络PNN的分类预测 - 附代码

基于热交换算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于热交换算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于热交换优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络…...

main.js 中的 render函数

按照之前的单组件文件中的写法&#xff0c;我们的写法应该是这样的 import App from ./App.vuenew Vue({el: #app,templete: <App></App>,components: {App}, }) 1、定义el根节点。2、注册App组件。3、渲染 templete 模板 但是在脚手架工程中&#xff0c;他是这…...

Pandas 将DataFrame中单元格内的列表拆分成单独的行

使用 explode 函数 import pandas as pddata {month: [1, 2],week: [[i for i in range(2)], [i for i in range(3)]]} df pd.DataFrame(data) print(df)df df.explode(week) print(df)...

PDF转化为图片

Java 类 PDF2Image 在包 com.oncloudsoft.zbznhc.common.util.pdf 中是用来将 PDF 文件转换为图像的。它使用了 Apache PDFBox 库来处理 PDF 文档并生成图像。下面是类中每个部分的详细解释&#xff1a; 类和方法说明 类 PDF2Image: 使用了 Lombok 库的 Slf4j 注解&#xff0c…...

【Java】智慧工地管理系统源码(SaaS模式)

智慧工地是聚焦工程施工现场&#xff0c;紧紧围绕人、机、料、法、环等关键要素&#xff0c;综合运用物联网、云计算、大数据、移动计算和智能设备等软硬件信息技术&#xff0c;与施工生产过程相融合。 一、什么是智慧工地 智慧工地是指利用移动互联、物联网、智能算法、地理信…...

torch.nn.functional.log_softmax 函数解析

该函数将输出向量转化为概率分布&#xff0c;作用和softmax一致。 相比softmax&#xff0c;对较小的概率分布处理能力更好。 一、定义 softmax 计算公式&#xff1a; log_softmax 计算公式&#xff1a; 可见仅仅是将 softmax 最外层套上 log 函数。 二、使用场景 log_soft…...

jQuery、vue、小程序、uni-app中的本地存储数据和接受数据是什么?

在这四个工具/框架中&#xff0c;Uni-app和微信小程序比较类似&#xff0c;因为它们都是为了实现跨平台开发而设计的。 jQuery 是一个快速、小巧且特性丰富的 JavaScript 库。它提供了各种操作和处理 HTML DOM、事件、动画&#xff0c;以及提供各种工具函数的功能。然而&#…...

黑马React18: 基础Part 1

黑马React: 基础1 Date: November 15, 2023 Sum: React介绍、JSX、事件绑定、组件、useState、B站评论 React介绍 概念: React由Meta公司研发&#xff0c;是一个用于 构建Web和原生交互界面的库 优势: 1-组件化的开发方式 2-优秀的性能 3-丰富的生态 4-跨平台开发 开发环境搭…...

windows Oracle Database 19c 卸载教程

目录 打开任务管理器 停止数据库服务 Universal Installer 卸载Oracle数据库程序 使用Oracle Installer卸载 删除注册表项 重新启动系统 打开任务管理器 ctrlShiftEsc可以快速打开任务管理器&#xff0c;找到oracle所有服务然后停止。 停止数据库服务 在开始卸载之前&a…...

动态规划解决leetcode上的两道回文问题(针对思路)

本期主讲的是使用动态规划去解决两道回文问题&#xff0c;分别是 647. 回文子串 - 力扣&#xff08;LeetCode&#xff09; 516. 最长回文子序列 - 力扣&#xff08;LeetCode&#xff09; 而不是leetcode5.最长回文子串&#xff0c;虽然这道题也是回文问题&#xff0c;也可以…...

使用人工智能自动测试 Flutter 应用程序

移动应用程序开发的增长速度比以往任何时候都快。几乎每个企业都需要移动应用程序来保持市场竞争力。由于像 React Native 这样的跨平台移动应用程序开发框架允许公司使用单一源代码和单一编程语言构建 iOS 和 Android 应用程序&#xff0c; Flutter是 Google 支持的另一个热门…...

四、程序员指南:数据平面开发套件

REORDER LIBRARY 重排序库提供了根据其序列号对mbuf进行重排序的机制。 16.1 操作 重排序库本质上是一个对mbuf进行重新排序的缓冲区。用户将乱序的mbuf插入重排序缓冲区&#xff0c;并从中提取顺序正确的mbuf。 在任何给定时刻&#xff0c;重排序缓冲区包含其序列号位于序列…...

Go 之 captcha 生成图像验证码

目前 chptcha 好像只可以生成纯数字的图像验证码&#xff0c;不过对于普通简单应用来说也足够了。captcha默认将store封装到内部&#xff0c;未提供对外操作的接口&#xff0c;因此使用自己显式生成的store&#xff0c;可以通过store自定义要生成的验证码。 package mainimpor…...

【Java从入门到大牛】多线程

&#x1f525; 本文由 程序喵正在路上 原创&#xff0c;CSDN首发&#xff01; &#x1f496; 系列专栏&#xff1a;Java从入门到大牛 &#x1f320; 首发时间&#xff1a;2023年11月18日 &#x1f98b; 欢迎关注&#x1f5b1;点赞&#x1f44d;收藏&#x1f31f;留言&#x1f4…...

UE5 C++报错:is not currently enabled for Live Coding

解决办法&#xff1a; 再次打开项目&#xff0c;以此法打开&#xff1a;...

mysql服务器数据同步

在Linux和Windows之间实现MySQL服务器数据的同步。下面是一些常见的方法和工具&#xff1a; 复制&#xff08;Replication&#xff09;&#xff1a;MySQL复制是一种常见的数据同步技术&#xff0c;可用于将一个MySQL服务器的数据复制到其他服务器。您可以设置主服务器&#xff…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...