当前位置: 首页 > news >正文

跟李沐学AI-深度学习课程05线性代数

线性代数

🏷sec_linear-algebra

在介绍完如何存储和操作数据后,接下来将简要地回顾一下部分基本线性代数内容。
这些内容有助于读者了解和实现本书中介绍的大多数模型。
本节将介绍线性代数中的基本数学对象、算术和运算,并用数学符号和相应的代码实现来表示它们。

标量

如果你曾经在餐厅支付餐费,那么应该已经知道一些基本的线性代数,比如在数字间相加或相乘。
例如,北京的温度为 5 2 ∘ F 52^{\circ}F 52F(华氏度,除摄氏度外的另一种温度计量单位)。
严格来说,仅包含一个数值被称为标量(scalar)。
如果要将此华氏度值转换为更常用的摄氏度,
则可以计算表达式 c = 5 9 ( f − 32 ) c=\frac{5}{9}(f-32) c=95(f32),并将 f f f赋为 52 52 52
在此等式中,每一项( 5 5 5 9 9 9 32 32 32)都是标量值。
符号 c c c f f f称为变量(variable),它们表示未知的标量值。

本书采用了数学表示法,其中标量变量由普通小写字母表示(例如, x x x y y y z z z)。
本书用 R \mathbb{R} R表示所有(连续)实数标量的空间,之后将严格定义空间(space)是什么,
但现在只要记住表达式 x ∈ R x\in\mathbb{R} xR是表示 x x x是一个实值标量的正式形式。
符号 ∈ \in 称为“属于”,它表示“是集合中的成员”。
例如 x , y ∈ { 0 , 1 } x, y \in \{0,1\} x,y{0,1}可以用来表明 x x x y y y是值只能为 0 0 0 1 1 1的数字。

(标量由只有一个元素的张量表示)。
下面的代码将实例化两个标量,并执行一些熟悉的算术运算,即加法、乘法、除法和指数。

from mxnet import np, npx
npx.set_np()x = np.array(3.0)
y = np.array(2.0)x + y, x * y, x / y, x ** y
#@tab pytorch
import torchx = torch.tensor(3.0)
y = torch.tensor(2.0)x + y, x * y, x / y, x**y
#@tab tensorflow
import tensorflow as tfx = tf.constant(3.0)
y = tf.constant(2.0)x + y, x * y, x / y, x**y
#@tab paddle
import warnings
warnings.filterwarnings(action='ignore')
import paddlex = paddle.to_tensor([3.0])
y = paddle.to_tensor([2.0])x + y, x * y, x / y, x**y

向量

[向量可以被视为标量值组成的列表]。
这些标量值被称为向量的元素(element)或分量(component)。
当向量表示数据集中的样本时,它们的值具有一定的现实意义。
例如,如果我们正在训练一个模型来预测贷款违约风险,可能会将每个申请人与一个向量相关联,
其分量与其收入、工作年限、过往违约次数和其他因素相对应。
如果我们正在研究医院患者可能面临的心脏病发作风险,可能会用一个向量来表示每个患者,
其分量为最近的生命体征、胆固醇水平、每天运动时间等。
在数学表示法中,向量通常记为粗体、小写的符号
(例如, x \mathbf{x} x y \mathbf{y} y z ) \mathbf{z}) z))。

人们通过一维张量表示向量。一般来说,张量可以具有任意长度,取决于机器的内存限制。

x = np.arange(4)
x
#@tab pytorch
x = torch.arange(4)
x
#@tab tensorflow
x = tf.range(4)
x
#@tab paddle
x = paddle.arange(4)
x

我们可以使用下标来引用向量的任一元素,例如可以通过 x i x_i xi来引用第 i i i个元素。
注意,元素 x i x_i xi是一个标量,所以我们在引用它时不会加粗。
大量文献认为列向量是向量的默认方向,在本书中也是如此。
在数学中,向量 x \mathbf{x} x可以写为:

x = [ x 1 x 2 ⋮ x n ] , \mathbf{x} =\begin{bmatrix}x_{1} \\x_{2} \\ \vdots \\x_{n}\end{bmatrix}, x= x1x2xn ,
:eqlabel:eq_vec_def

其中 x 1 , … , x n x_1,\ldots,x_n x1,,xn是向量的元素。在代码中,我们(通过张量的索引来访问任一元素)。

x[3]
#@tab pytorch
x[3]
#@tab tensorflow
x[3]
#@tab paddle
x[3]

长度、维度和形状

向量只是一个数字数组,就像每个数组都有一个长度一样,每个向量也是如此。
在数学表示法中,如果我们想说一个向量 x \mathbf{x} x n n n个实值标量组成,
可以将其表示为 x ∈ R n \mathbf{x}\in\mathbb{R}^n xRn
向量的长度通常称为向量的维度(dimension)。

与普通的Python数组一样,我们可以通过调用Python的内置len()函数来[访问张量的长度]。

len(x)
#@tab pytorch
len(x)
#@tab tensorflow
len(x)
#@tab paddle
len(x)

当用张量表示一个向量(只有一个轴)时,我们也可以通过.shape属性访问向量的长度。
形状(shape)是一个元素组,列出了张量沿每个轴的长度(维数)。
对于(只有一个轴的张量,形状只有一个元素。)

x.shape
#@tab pytorch
x.shape
#@tab tensorflow
x.shape
#@tab paddle
x.shape

请注意,维度(dimension)这个词在不同上下文时往往会有不同的含义,这经常会使人感到困惑。
为了清楚起见,我们在此明确一下:
向量的维度被用来表示向量的长度,即向量或轴的元素数量。
然而,张量的维度用来表示张量具有的轴数。
在这个意义上,张量的某个轴的维数就是这个轴的长度。

矩阵

正如向量将标量从零阶推广到一阶,矩阵将向量从一阶推广到二阶。
矩阵,我们通常用粗体、大写字母来表示
(例如, X \mathbf{X} X Y \mathbf{Y} Y Z \mathbf{Z} Z),
在代码中表示为具有两个轴的张量。

数学表示法使用 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n
来表示矩阵 A \mathbf{A} A,其由 m m m行和 n n n列的实值标量组成。
我们可以将任意矩阵 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n视为一个表格,
其中每个元素 a i j a_{ij} aij属于第 i i i行第 j j j列:

A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] . \mathbf{A}=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix}. A= a11a21am1a12a22am2a1na2namn .
:eqlabel:eq_matrix_def

对于任意 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n
A \mathbf{A} A的形状是( m m m, n n n)或 m × n m \times n m×n
当矩阵具有相同数量的行和列时,其形状将变为正方形;
因此,它被称为方阵(square matrix)。

当调用函数来实例化张量时,
我们可以[通过指定两个分量 m m m n n n来创建一个形状为 m × n m \times n m×n的矩阵]。

A = np.arange(20).reshape(5, 4)
A
#@tab pytorch
A = torch.arange(20).reshape(5, 4)
A
#@tab tensorflow
A = tf.reshape(tf.range(20), (5, 4))
A
#@tab paddle
A = paddle.reshape(paddle.arange(20), (5, 4))
A

我们可以通过行索引( i i i)和列索引( j j j)来访问矩阵中的标量元素 a i j a_{ij} aij
例如 [ A ] i j [\mathbf{A}]_{ij} [A]ij
如果没有给出矩阵 A \mathbf{A} A的标量元素,如在 :eqref:eq_matrix_def那样,
我们可以简单地使用矩阵 A \mathbf{A} A的小写字母索引下标 a i j a_{ij} aij
来引用 [ A ] i j [\mathbf{A}]_{ij} [A]ij
为了表示起来简单,只有在必要时才会将逗号插入到单独的索引中,
例如 a 2 , 3 j a_{2,3j} a2,3j [ A ] 2 i − 1 , 3 [\mathbf{A}]_{2i-1,3} [A]2i1,3

当我们交换矩阵的行和列时,结果称为矩阵的转置(transpose)。
通常用 a ⊤ \mathbf{a}^\top a来表示矩阵的转置,如果 B = A ⊤ \mathbf{B}=\mathbf{A}^\top B=A
则对于任意 i i i j j j,都有 b i j = a j i b_{ij}=a_{ji} bij=aji
因此,在 :eqref:eq_matrix_def中的转置是一个形状为 n × m n \times m n×m的矩阵:

A ⊤ = [ a 11 a 21 … a m 1 a 12 a 22 … a m 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n … a m n ] . \mathbf{A}^\top = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}. A= a11a12a1na21a22a2nam1am2amn .

现在在代码中访问(矩阵的转置)。

A.T
#@tab pytorch
A.T
#@tab tensorflow
tf.transpose(A)
#@tab paddle
paddle.transpose(A, perm=[1, 0])

作为方阵的一种特殊类型,[对称矩阵(symmetric matrix) A \mathbf{A} A等于其转置: A = A ⊤ \mathbf{A} = \mathbf{A}^\top A=A]。
这里定义一个对称矩阵 B \mathbf{B} B

B = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B
#@tab pytorch
B = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B
#@tab tensorflow
B = tf.constant([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B
#@tab paddle
B = paddle.to_tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B

现在我们将B与它的转置进行比较。

B == B.T
#@tab pytorch
B == B.T
#@tab tensorflow
B == tf.transpose(B)
#@tab paddle
B == paddle.transpose(B, perm=[1, 0])

矩阵是有用的数据结构:它们允许我们组织具有不同模式的数据。
例如,我们矩阵中的行可能对应于不同的房屋(数据样本),而列可能对应于不同的属性。
曾经使用过电子表格软件或已阅读过 :numref:sec_pandas的人,应该对此很熟悉。
因此,尽管单个向量的默认方向是列向量,但在表示表格数据集的矩阵中,
将每个数据样本作为矩阵中的行向量更为常见。
后面的章节将讲到这点,这种约定将支持常见的深度学习实践。
例如,沿着张量的最外轴,我们可以访问或遍历小批量的数据样本。

张量

[就像向量是标量的推广,矩阵是向量的推广一样,我们可以构建具有更多轴的数据结构]。
张量(本小节中的“张量”指代数对象)是描述具有任意数量轴的 n n n维数组的通用方法。
例如,向量是一阶张量,矩阵是二阶张量。
张量用特殊字体的大写字母表示(例如, X \mathsf{X} X Y \mathsf{Y} Y Z \mathsf{Z} Z),
它们的索引机制(例如 x i j k x_{ijk} xijk [ X ] 1 , 2 i − 1 , 3 [\mathsf{X}]_{1,2i-1,3} [X]1,2i1,3)与矩阵类似。

当我们开始处理图像时,张量将变得更加重要,图像以 n n n维数组形式出现,
其中3个轴对应于高度、宽度,以及一个通道(channel)轴,
用于表示颜色通道(红色、绿色和蓝色)。
现在先将高阶张量暂放一边,而是专注学习其基础知识。

X = np.arange(24).reshape(2, 3, 4)
X
#@tab pytorch
X = torch.arange(24).reshape(2, 3, 4)
X
#@tab tensorflow
X = tf.reshape(tf.range(24), (2, 3, 4))
X
#@tab paddle
X = paddle.reshape(paddle.arange(24), (2, 3, 4))
X

张量算法的基本性质

标量、向量、矩阵和任意数量轴的张量(本小节中的“张量”指代数对象)有一些实用的属性。
例如,从按元素操作的定义中可以注意到,任何按元素的一元运算都不会改变其操作数的形状。
同样,[给定具有相同形状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量]。
例如,将两个相同形状的矩阵相加,会在这两个矩阵上执行元素加法。

A = np.arange(20).reshape(5, 4)
B = A.copy()  # 通过分配新内存,将A的一个副本分配给B
A, A + B
#@tab pytorch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()  # 通过分配新内存,将A的一个副本分配给B
A, A + B
#@tab tensorflow
A = tf.reshape(tf.range(20, dtype=tf.float32), (5, 4))
B = A  # 不能通过分配新内存将A克隆到B
A, A + B
#@tab paddle
A = paddle.reshape(paddle.arange(20, dtype=paddle.float32), (5, 4))
B = A.clone()  # 通过分配新内存,将A的一个副本分配给B
A, A + B

具体而言,[两个矩阵的按元素乘法称为Hadamard积(Hadamard product)(数学符号 ⊙ \odot ]。
对于矩阵 B ∈ R m × n \mathbf{B} \in \mathbb{R}^{m \times n} BRm×n
其中第 i i i行和第 j j j列的元素是 b i j b_{ij} bij
矩阵 A \mathbf{A} A(在 :eqref:eq_matrix_def中定义)和 B \mathbf{B} B的Hadamard积为:
A ⊙ B = [ a 11 b 11 a 12 b 12 … a 1 n b 1 n a 21 b 21 a 22 b 22 … a 2 n b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 b m 1 a m 2 b m 2 … a m n b m n ] . \mathbf{A} \odot \mathbf{B} = \begin{bmatrix} a_{11} b_{11} & a_{12} b_{12} & \dots & a_{1n} b_{1n} \\ a_{21} b_{21} & a_{22} b_{22} & \dots & a_{2n} b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} b_{m1} & a_{m2} b_{m2} & \dots & a_{mn} b_{mn} \end{bmatrix}. AB= a11b11a21b21am1bm1a12b12a22b22am2bm2a1nb1na2nb2namnbmn .

A * B
#@tab pytorch
A * B
#@tab tensorflow
A * B
#@tab paddle
A * B

将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。

a = 2
X = np.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape
#@tab pytorch
a = 2
X = torch.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape
#@tab tensorflow
a = 2
X = tf.reshape(tf.range(24), (2, 3, 4))
a + X, (a * X).shape
#@tab paddle
a = 2
X = paddle.reshape(paddle.arange(24), (2, 3, 4))
a + X, (a * X).shape

降维

🏷subseq_lin-alg-reduction

我们可以对任意张量进行的一个有用的操作是[计算其元素的和]。
数学表示法使用 ∑ \sum 符号表示求和。
为了表示长度为 d d d的向量中元素的总和,可以记为 ∑ i = 1 d x i \sum_{i=1}^dx_i i=1dxi
在代码中可以调用计算求和的函数:

x = np.arange(4)
x, x.sum()
#@tab pytorch
x = torch.arange(4, dtype=torch.float32)
x, x.sum()
#@tab tensorflow
x = tf.range(4, dtype=tf.float32)
x, tf.reduce_sum(x)
#@tab paddle
x = paddle.arange(4, dtype=paddle.float32)
x, x.sum()

我们可以(表示任意形状张量的元素和)。
例如,矩阵 A \mathbf{A} A中元素的和可以记为 ∑ i = 1 m ∑ j = 1 n a i j \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} i=1mj=1naij

A.shape, A.sum()
#@tab pytorch
A.shape, A.sum()
#@tab tensorflow
A.shape, tf.reduce_sum(A)
#@tab paddle
A.shape, A.sum()

默认情况下,调用求和函数会沿所有的轴降低张量的维度,使它变为一个标量。
我们还可以[指定张量沿哪一个轴来通过求和降低维度]。
以矩阵为例,为了通过求和所有行的元素来降维(轴0),可以在调用函数时指定axis=0
由于输入矩阵沿0轴降维以生成输出向量,因此输入轴0的维数在输出形状中消失。

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
#@tab pytorch
A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
#@tab tensorflow
A_sum_axis0 = tf.reduce_sum(A, axis=0)
A_sum_axis0, A_sum_axis0.shape
#@tab paddle
A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape

指定axis=1将通过汇总所有列的元素降维(轴1)。因此,输入轴1的维数在输出形状中消失。

A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
#@tab pytorch
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
#@tab tensorflow
A_sum_axis1 = tf.reduce_sum(A, axis=1)
A_sum_axis1, A_sum_axis1.shape
#@tab paddle
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape

沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和。

A.sum(axis=[0, 1])  # 结果和A.sum()相同
#@tab pytorch
A.sum(axis=[0, 1])  # 结果和A.sum()相同
#@tab tensorflow
tf.reduce_sum(A, axis=[0, 1])  # 结果和tf.reduce_sum(A)相同
#@tab paddle
A.sum(axis=[0, 1])

[一个与求和相关的量是平均值(mean或average)]。
我们通过将总和除以元素总数来计算平均值。
在代码中,我们可以调用函数来计算任意形状张量的平均值。

A.mean(), A.sum() / A.size
#@tab pytorch
A.mean(), A.sum() / A.numel()
#@tab tensorflow
tf.reduce_mean(A), tf.reduce_sum(A) / tf.size(A).numpy()
#@tab paddle
A.mean(), A.sum() / A.numel()

同样,计算平均值的函数也可以沿指定轴降低张量的维度。

A.mean(axis=0), A.sum(axis=0) / A.shape[0]
#@tab pytorch
A.mean(axis=0), A.sum(axis=0) / A.shape[0]
#@tab tensorflow
tf.reduce_mean(A, axis=0), tf.reduce_sum(A, axis=0) / A.shape[0]
#@tab paddle
A.mean(axis=0), A.sum(axis=0) / A.shape[0]

非降维求和

🏷subseq_lin-alg-non-reduction

但是,有时在调用函数来[计算总和或均值时保持轴数不变]会很有用。

sum_A = A.sum(axis=1, keepdims=True)
sum_A
#@tab pytorch
sum_A = A.sum(axis=1, keepdims=True)
sum_A
#@tab tensorflow
sum_A = tf.reduce_sum(A, axis=1, keepdims=True)
sum_A
#@tab paddle
sum_A = paddle.sum(A, axis=1, keepdim=True)
sum_A

例如,由于sum_A在对每行进行求和后仍保持两个轴,我们可以(通过广播将A除以sum_A)。

A / sum_A
#@tab pytorch
A / sum_A
#@tab tensorflow
A / sum_A
#@tab paddle
A / sum_A

如果我们想沿[某个轴计算A元素的累积总和],
比如axis=0(按行计算),可以调用cumsum函数。
此函数不会沿任何轴降低输入张量的维度。

A.cumsum(axis=0)
#@tab pytorch
A.cumsum(axis=0)
#@tab tensorflow
tf.cumsum(A, axis=0)
#@tab paddle
A.cumsum(axis=0)

点积(Dot Product)

我们已经学习了按元素操作、求和及平均值。
另一个最基本的操作之一是点积。
给定两个向量 x , y ∈ R d \mathbf{x},\mathbf{y}\in\mathbb{R}^d x,yRd
它们的点积(dot product) x ⊤ y \mathbf{x}^\top\mathbf{y} xy
(或 ⟨ x , y ⟩ \langle\mathbf{x},\mathbf{y}\rangle x,y
是相同位置的按元素乘积的和: x ⊤ y = ∑ i = 1 d x i y i \mathbf{x}^\top \mathbf{y} = \sum_{i=1}^{d} x_i y_i xy=i=1dxiyi

[点积是相同位置的按元素乘积的和]

y = np.ones(4)
x, y, np.dot(x, y)
#@tab pytorch
y = torch.ones(4, dtype = torch.float32)
x, y, torch.dot(x, y)
#@tab tensorflow
y = tf.ones(4, dtype=tf.float32)
x, y, tf.tensordot(x, y, axes=1)
#@tab paddle
y = paddle.ones(shape=[4], dtype='float32')
x, y, paddle.dot(x, y)

注意,(我们可以通过执行按元素乘法,然后进行求和来表示两个向量的点积):

np.sum(x * y)
#@tab pytorch
torch.sum(x * y)
#@tab tensorflow
tf.reduce_sum(x * y)
#@tab paddle
paddle.sum(x * y)

点积在很多场合都很有用。
例如,给定一组由向量 x ∈ R d \mathbf{x} \in \mathbb{R}^d xRd表示的值,
和一组由 w ∈ R d \mathbf{w} \in \mathbb{R}^d wRd表示的权重。
x \mathbf{x} x中的值根据权重 w \mathbf{w} w的加权和,
可以表示为点积 x ⊤ w \mathbf{x}^\top \mathbf{w} xw
当权重为非负数且和为1(即 ( ∑ i = 1 d w i = 1 ) \left(\sum_{i=1}^{d}{w_i}=1\right) (i=1dwi=1))时,
点积表示加权平均(weighted average)。
将两个向量规范化得到单位长度后,点积表示它们夹角的余弦。
本节后面的内容将正式介绍长度(length)的概念。

矩阵-向量积

现在我们知道如何计算点积,可以开始理解矩阵-向量积(matrix-vector product)。
回顾分别在 :eqref:eq_matrix_def和 :eqref:eq_vec_def中定义的矩阵 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n和向量 x ∈ R n \mathbf{x} \in \mathbb{R}^n xRn
让我们将矩阵 A \mathbf{A} A用它的行向量表示:

A = [ a 1 ⊤ a 2 ⊤ ⋮ a m ⊤ ] , \mathbf{A}= \begin{bmatrix} \mathbf{a}^\top_{1} \\ \mathbf{a}^\top_{2} \\ \vdots \\ \mathbf{a}^\top_m \\ \end{bmatrix}, A= a1a2am ,

其中每个 a i ⊤ ∈ R n \mathbf{a}^\top_{i} \in \mathbb{R}^n aiRn都是行向量,表示矩阵的第 i i i行。
[矩阵向量积 A x \mathbf{A}\mathbf{x} Ax是一个长度为 m m m的列向量,
其第 i i i个元素是点积 a i ⊤ x \mathbf{a}^\top_i \mathbf{x} aix
]:

A x = [ a 1 ⊤ a 2 ⊤ ⋮ a m ⊤ ] x = [ a 1 ⊤ x a 2 ⊤ x ⋮ a m ⊤ x ] . \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}^\top_{1} \\ \mathbf{a}^\top_{2} \\ \vdots \\ \mathbf{a}^\top_m \\ \end{bmatrix}\mathbf{x} = \begin{bmatrix} \mathbf{a}^\top_{1} \mathbf{x} \\ \mathbf{a}^\top_{2} \mathbf{x} \\ \vdots\\ \mathbf{a}^\top_{m} \mathbf{x}\\ \end{bmatrix}. Ax= a1a2am x= a1xa2xamx .

我们可以把一个矩阵 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n乘法看作一个从 R n \mathbb{R}^{n} Rn R m \mathbb{R}^{m} Rm向量的转换。
这些转换是非常有用的,例如可以用方阵的乘法来表示旋转。
后续章节将讲到,我们也可以使用矩阵-向量积来描述在给定前一层的值时,
求解神经网络每一层所需的复杂计算。

:begin_tab:mxnet
在代码中使用张量表示矩阵-向量积,我们使用与点积相同的dot函数。
当我们为矩阵A和向量x调用np.dot(A,x)时,会执行矩阵-向量积。
注意,A的列维数(沿轴1的长度)必须与x的维数(其长度)相同。
:end_tab:

:begin_tab:pytorch
在代码中使用张量表示矩阵-向量积,我们使用mv函数。
当我们为矩阵A和向量x调用torch.mv(A, x)时,会执行矩阵-向量积。
注意,A的列维数(沿轴1的长度)必须与x的维数(其长度)相同。
:end_tab:

:begin_tab:tensorflow
在代码中使用张量表示矩阵-向量积,我们使用与点积相同的matvec函数。
当我们为矩阵A和向量x调用tf.linalg.matvec(A, x)时,会执行矩阵-向量积。
注意,A的列维数(沿轴1的长度)必须与x的维数(其长度)相同。
:end_tab:

A.shape, x.shape, np.dot(A, x)
#@tab pytorch
A.shape, x.shape, torch.mv(A, x)
#@tab tensorflow
A.shape, x.shape, tf.linalg.matvec(A, x)
#@tab paddle
A.shape, x.shape, paddle.mv(A, x)

矩阵-矩阵乘法

在掌握点积和矩阵-向量积的知识后,
那么矩阵-矩阵乘法(matrix-matrix multiplication)应该很简单。

假设有两个矩阵 A ∈ R n × k \mathbf{A} \in \mathbb{R}^{n \times k} ARn×k B ∈ R k × m \mathbf{B} \in \mathbb{R}^{k \times m} BRk×m

A = [ a 11 a 12 ⋯ a 1 k a 21 a 22 ⋯ a 2 k ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n k ] , B = [ b 11 b 12 ⋯ b 1 m b 21 b 22 ⋯ b 2 m ⋮ ⋮ ⋱ ⋮ b k 1 b k 2 ⋯ b k m ] . \mathbf{A}=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \\ \end{bmatrix},\quad \mathbf{B}=\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{km} \\ \end{bmatrix}. A= a11a21an1a12a22an2a1ka2kank ,B= b11b21bk1b12b22bk2b1mb2mbkm .

用行向量 a i ⊤ ∈ R k \mathbf{a}^\top_{i} \in \mathbb{R}^k aiRk表示矩阵 A \mathbf{A} A的第 i i i行,并让列向量 b j ∈ R k \mathbf{b}_{j} \in \mathbb{R}^k bjRk作为矩阵 B \mathbf{B} B的第 j j j列。要生成矩阵积 C = A B \mathbf{C} = \mathbf{A}\mathbf{B} C=AB,最简单的方法是考虑 A \mathbf{A} A的行向量和 B \mathbf{B} B的列向量:

A = [ a 1 ⊤ a 2 ⊤ ⋮ a n ⊤ ] , B = [ b 1 b 2 ⋯ b m ] . \mathbf{A}= \begin{bmatrix} \mathbf{a}^\top_{1} \\ \mathbf{a}^\top_{2} \\ \vdots \\ \mathbf{a}^\top_n \\ \end{bmatrix}, \quad \mathbf{B}=\begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{m} \\ \end{bmatrix}. A= a1a2an ,B=[b1b2bm].
当我们简单地将每个元素 c i j c_{ij} cij计算为点积 a i ⊤ b j \mathbf{a}^\top_i \mathbf{b}_j aibj:

C = A B = [ a 1 ⊤ a 2 ⊤ ⋮ a n ⊤ ] [ b 1 b 2 ⋯ b m ] = [ a 1 ⊤ b 1 a 1 ⊤ b 2 ⋯ a 1 ⊤ b m a 2 ⊤ b 1 a 2 ⊤ b 2 ⋯ a 2 ⊤ b m ⋮ ⋮ ⋱ ⋮ a n ⊤ b 1 a n ⊤ b 2 ⋯ a n ⊤ b m ] . \mathbf{C} = \mathbf{AB} = \begin{bmatrix} \mathbf{a}^\top_{1} \\ \mathbf{a}^\top_{2} \\ \vdots \\ \mathbf{a}^\top_n \\ \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{m} \\ \end{bmatrix} = \begin{bmatrix} \mathbf{a}^\top_{1} \mathbf{b}_1 & \mathbf{a}^\top_{1}\mathbf{b}_2& \cdots & \mathbf{a}^\top_{1} \mathbf{b}_m \\ \mathbf{a}^\top_{2}\mathbf{b}_1 & \mathbf{a}^\top_{2} \mathbf{b}_2 & \cdots & \mathbf{a}^\top_{2} \mathbf{b}_m \\ \vdots & \vdots & \ddots &\vdots\\ \mathbf{a}^\top_{n} \mathbf{b}_1 & \mathbf{a}^\top_{n}\mathbf{b}_2& \cdots& \mathbf{a}^\top_{n} \mathbf{b}_m \end{bmatrix}. C=AB= a1a2an [b1b2bm]= a1b1a2b1anb1a1b2a2b2anb2a1bma2bmanbm .

[我们可以将矩阵-矩阵乘法 A B \mathbf{AB} AB看作简单地执行 m m m次矩阵-向量积,并将结果拼接在一起,形成一个 n × m n \times m n×m矩阵]。
在下面的代码中,我们在AB上执行矩阵乘法。
这里的A是一个5行4列的矩阵,B是一个4行3列的矩阵。
两者相乘后,我们得到了一个5行3列的矩阵。

B = np.ones(shape=(4, 3))
np.dot(A, B)
#@tab pytorch
B = torch.ones(4, 3)
torch.mm(A, B)
#@tab tensorflow
B = tf.ones((4, 3), tf.float32)
tf.matmul(A, B)
#@tab paddle
B = paddle.ones(shape=[4, 3], dtype='float32')
paddle.mm(A, B)

矩阵-矩阵乘法可以简单地称为矩阵乘法,不应与"Hadamard积"混淆。

范数

🏷subsec_lin-algebra-norms

线性代数中最有用的一些运算符是范数(norm)。
非正式地说,向量的范数是表示一个向量有多大。
这里考虑的大小(size)概念不涉及维度,而是分量的大小。

在线性代数中,向量范数是将向量映射到标量的函数 f f f
给定任意向量 x \mathbf{x} x,向量范数要满足一些属性。
第一个性质是:如果我们按常数因子 α \alpha α缩放向量的所有元素,
其范数也会按相同常数因子的绝对值缩放:

f ( α x ) = ∣ α ∣ f ( x ) . f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x}). f(αx)=αf(x).

第二个性质是熟悉的三角不等式:

f ( x + y ) ≤ f ( x ) + f ( y ) . f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y}). f(x+y)f(x)+f(y).

第三个性质简单地说范数必须是非负的:

f ( x ) ≥ 0. f(\mathbf{x}) \geq 0. f(x)0.

这是有道理的。因为在大多数情况下,任何东西的最小的大小是0。
最后一个性质要求范数最小为0,当且仅当向量全由0组成。

∀ i , [ x ] i = 0 ⇔ f ( x ) = 0. \forall i, [\mathbf{x}]_i = 0 \Leftrightarrow f(\mathbf{x})=0. i,[x]i=0f(x)=0.

范数听起来很像距离的度量。
欧几里得距离和毕达哥拉斯定理中的非负性概念和三角不等式可能会给出一些启发。
事实上,欧几里得距离是一个 L 2 L_2 L2范数:
假设 n n n维向量 x \mathbf{x} x中的元素是 x 1 , … , x n x_1,\ldots,x_n x1,,xn,其[ L 2 L_2 L2范数是向量元素平方和的平方根:]

( ∥ x ∥ 2 = ∑ i = 1 n x i 2 , \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}, x2=i=1nxi2 ,)

其中,在 L 2 L_2 L2范数中常常省略下标 2 2 2,也就是说 ∥ x ∥ \|\mathbf{x}\| x等同于 ∥ x ∥ 2 \|\mathbf{x}\|_2 x2
在代码中,我们可以按如下方式计算向量的 L 2 L_2 L2范数。

u = np.array([3, -4])
np.linalg.norm(u)
#@tab pytorch
u = torch.tensor([3.0, -4.0])
torch.norm(u)
#@tab tensorflow
u = tf.constant([3.0, -4.0])
tf.norm(u)
#@tab paddle
u = paddle.to_tensor([3.0, -4.0])
paddle.norm(u)

深度学习中更经常地使用 L 2 L_2 L2范数的平方,也会经常遇到[ L 1 L_1 L1范数,它表示为向量元素的绝对值之和:]

( ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ . \|\mathbf{x}\|_1 = \sum_{i=1}^n \left|x_i \right|. x1=i=1nxi.)

L 2 L_2 L2范数相比, L 1 L_1 L1范数受异常值的影响较小。
为了计算 L 1 L_1 L1范数,我们将绝对值函数和按元素求和组合起来。

np.abs(u).sum()
#@tab pytorch
torch.abs(u).sum()
#@tab tensorflow
tf.reduce_sum(tf.abs(u))
#@tab paddle
paddle.abs(u).sum()

L 2 L_2 L2范数和 L 1 L_1 L1范数都是更一般的 L p L_p Lp范数的特例:

∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p . \|\mathbf{x}\|_p = \left(\sum_{i=1}^n \left|x_i \right|^p \right)^{1/p}. xp=(i=1nxip)1/p.

类似于向量的 L 2 L_2 L2范数,[矩阵] X ∈ R m × n \mathbf{X} \in \mathbb{R}^{m \times n} XRm×n(Frobenius范数(Frobenius norm)是矩阵元素平方和的平方根:)

( ∥ X ∥ F = ∑ i = 1 m ∑ j = 1 n x i j 2 . \|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n x_{ij}^2}. XF=i=1mj=1nxij2 .)

Frobenius范数满足向量范数的所有性质,它就像是矩阵形向量的 L 2 L_2 L2范数。
调用以下函数将计算矩阵的Frobenius范数。

np.linalg.norm(np.ones((4, 9)))
#@tab pytorch
torch.norm(torch.ones((4, 9)))
#@tab tensorflow
tf.norm(tf.ones((4, 9)))
#@tab paddle
paddle.norm(paddle.ones(shape=[4, 9], dtype='float32'))

范数和目标

🏷subsec_norms_and_objectives

在深度学习中,我们经常试图解决优化问题:
最大化分配给观测数据的概率;
最小化预测和真实观测之间的距离。
用向量表示物品(如单词、产品或新闻文章),以便最小化相似项目之间的距离,最大化不同项目之间的距离。
目标,或许是深度学习算法最重要的组成部分(除了数据),通常被表达为范数。

关于线性代数的更多信息

仅用一节,我们就教会了阅读本书所需的、用以理解现代深度学习的线性代数。
线性代数还有很多,其中很多数学对于机器学习非常有用。
例如,矩阵可以分解为因子,这些分解可以显示真实世界数据集中的低维结构。
机器学习的整个子领域都侧重于使用矩阵分解及其向高阶张量的泛化,来发现数据集中的结构并解决预测问题。
当开始动手尝试并在真实数据集上应用了有效的机器学习模型,你会更倾向于学习更多数学。
因此,这一节到此结束,本书将在后面介绍更多数学知识。

如果渴望了解有关线性代数的更多信息,可以参考线性代数运算的在线附录或其他优秀资源 :cite:Strang.1993,Kolter.2008,Petersen.Pedersen.ea.2008

小结

  • 标量、向量、矩阵和张量是线性代数中的基本数学对象。
  • 向量泛化自标量,矩阵泛化自向量。
  • 标量、向量、矩阵和张量分别具有零、一、二和任意数量的轴。
  • 一个张量可以通过summean沿指定的轴降低维度。
  • 两个矩阵的按元素乘法被称为他们的Hadamard积。它与矩阵乘法不同。
  • 在深度学习中,我们经常使用范数,如 L 1 L_1 L1范数、 L 2 L_2 L2范数和Frobenius范数。
  • 我们可以对标量、向量、矩阵和张量执行各种操作。

练习

  1. 证明一个矩阵 A \mathbf{A} A的转置的转置是 A \mathbf{A} A,即 ( A ⊤ ) ⊤ = A (\mathbf{A}^\top)^\top = \mathbf{A} (A)=A
  2. 给出两个矩阵 A \mathbf{A} A B \mathbf{B} B,证明“它们转置的和”等于“它们和的转置”,即 A ⊤ + B ⊤ = ( A + B ) ⊤ \mathbf{A}^\top + \mathbf{B}^\top = (\mathbf{A} + \mathbf{B})^\top A+B=(A+B)
  3. 给定任意方阵 A \mathbf{A} A A + A ⊤ \mathbf{A} + \mathbf{A}^\top A+A总是对称的吗?为什么?
  4. 本节中定义了形状 ( 2 , 3 , 4 ) (2,3,4) (2,3,4)的张量Xlen(X)的输出结果是什么?
  5. 对于任意形状的张量X,len(X)是否总是对应于X特定轴的长度?这个轴是什么?
  6. 运行A/A.sum(axis=1),看看会发生什么。请分析一下原因?
  7. 考虑一个具有形状 ( 2 , 3 , 4 ) (2,3,4) (2,3,4)的张量,在轴0、1、2上的求和输出是什么形状?
  8. linalg.norm函数提供3个或更多轴的张量,并观察其输出。对于任意形状的张量这个函数计算得到什么?

:begin_tab:mxnet
Discussions
:end_tab:

:begin_tab:pytorch
Discussions
:end_tab:

:begin_tab:tensorflow
Discussions
:end_tab:

:begin_tab:paddle
Discussions
:end_tab:

相关文章:

跟李沐学AI-深度学习课程05线性代数

线性代数 🏷sec_linear-algebra 在介绍完如何存储和操作数据后,接下来将简要地回顾一下部分基本线性代数内容。 这些内容有助于读者了解和实现本书中介绍的大多数模型。 本节将介绍线性代数中的基本数学对象、算术和运算,并用数学符号和相应…...

电子病历编辑器源码(Springboot+原生HTML)

一、系统简介 本系统主要面向医院医生、护士,提供对住院病人的电子病历书写、保存、修改、打印等功能。本系统基于云端SaaS服务方式,通过浏览器方式访问和使用系统功能,提供电子病历在线制作、管理和使用的一体化电子病历解决方案&#xff0c…...

Qt的日志输出

在Qt中,一般习惯使用qDebug信息进行输出和打印调试信息到console或者文件中,在qDebug中,也有一些小技巧,可以帮助我们更好的使用qDebug打印日志记录,本文分享了qDebug使用的一些小技巧。 1. 打印出文件名、行号、调用函…...

基于热交换算法优化概率神经网络PNN的分类预测 - 附代码

基于热交换算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于热交换算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于热交换优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络…...

main.js 中的 render函数

按照之前的单组件文件中的写法&#xff0c;我们的写法应该是这样的 import App from ./App.vuenew Vue({el: #app,templete: <App></App>,components: {App}, }) 1、定义el根节点。2、注册App组件。3、渲染 templete 模板 但是在脚手架工程中&#xff0c;他是这…...

Pandas 将DataFrame中单元格内的列表拆分成单独的行

使用 explode 函数 import pandas as pddata {month: [1, 2],week: [[i for i in range(2)], [i for i in range(3)]]} df pd.DataFrame(data) print(df)df df.explode(week) print(df)...

PDF转化为图片

Java 类 PDF2Image 在包 com.oncloudsoft.zbznhc.common.util.pdf 中是用来将 PDF 文件转换为图像的。它使用了 Apache PDFBox 库来处理 PDF 文档并生成图像。下面是类中每个部分的详细解释&#xff1a; 类和方法说明 类 PDF2Image: 使用了 Lombok 库的 Slf4j 注解&#xff0c…...

【Java】智慧工地管理系统源码(SaaS模式)

智慧工地是聚焦工程施工现场&#xff0c;紧紧围绕人、机、料、法、环等关键要素&#xff0c;综合运用物联网、云计算、大数据、移动计算和智能设备等软硬件信息技术&#xff0c;与施工生产过程相融合。 一、什么是智慧工地 智慧工地是指利用移动互联、物联网、智能算法、地理信…...

torch.nn.functional.log_softmax 函数解析

该函数将输出向量转化为概率分布&#xff0c;作用和softmax一致。 相比softmax&#xff0c;对较小的概率分布处理能力更好。 一、定义 softmax 计算公式&#xff1a; log_softmax 计算公式&#xff1a; 可见仅仅是将 softmax 最外层套上 log 函数。 二、使用场景 log_soft…...

jQuery、vue、小程序、uni-app中的本地存储数据和接受数据是什么?

在这四个工具/框架中&#xff0c;Uni-app和微信小程序比较类似&#xff0c;因为它们都是为了实现跨平台开发而设计的。 jQuery 是一个快速、小巧且特性丰富的 JavaScript 库。它提供了各种操作和处理 HTML DOM、事件、动画&#xff0c;以及提供各种工具函数的功能。然而&#…...

黑马React18: 基础Part 1

黑马React: 基础1 Date: November 15, 2023 Sum: React介绍、JSX、事件绑定、组件、useState、B站评论 React介绍 概念: React由Meta公司研发&#xff0c;是一个用于 构建Web和原生交互界面的库 优势: 1-组件化的开发方式 2-优秀的性能 3-丰富的生态 4-跨平台开发 开发环境搭…...

windows Oracle Database 19c 卸载教程

目录 打开任务管理器 停止数据库服务 Universal Installer 卸载Oracle数据库程序 使用Oracle Installer卸载 删除注册表项 重新启动系统 打开任务管理器 ctrlShiftEsc可以快速打开任务管理器&#xff0c;找到oracle所有服务然后停止。 停止数据库服务 在开始卸载之前&a…...

动态规划解决leetcode上的两道回文问题(针对思路)

本期主讲的是使用动态规划去解决两道回文问题&#xff0c;分别是 647. 回文子串 - 力扣&#xff08;LeetCode&#xff09; 516. 最长回文子序列 - 力扣&#xff08;LeetCode&#xff09; 而不是leetcode5.最长回文子串&#xff0c;虽然这道题也是回文问题&#xff0c;也可以…...

使用人工智能自动测试 Flutter 应用程序

移动应用程序开发的增长速度比以往任何时候都快。几乎每个企业都需要移动应用程序来保持市场竞争力。由于像 React Native 这样的跨平台移动应用程序开发框架允许公司使用单一源代码和单一编程语言构建 iOS 和 Android 应用程序&#xff0c; Flutter是 Google 支持的另一个热门…...

四、程序员指南:数据平面开发套件

REORDER LIBRARY 重排序库提供了根据其序列号对mbuf进行重排序的机制。 16.1 操作 重排序库本质上是一个对mbuf进行重新排序的缓冲区。用户将乱序的mbuf插入重排序缓冲区&#xff0c;并从中提取顺序正确的mbuf。 在任何给定时刻&#xff0c;重排序缓冲区包含其序列号位于序列…...

Go 之 captcha 生成图像验证码

目前 chptcha 好像只可以生成纯数字的图像验证码&#xff0c;不过对于普通简单应用来说也足够了。captcha默认将store封装到内部&#xff0c;未提供对外操作的接口&#xff0c;因此使用自己显式生成的store&#xff0c;可以通过store自定义要生成的验证码。 package mainimpor…...

【Java从入门到大牛】多线程

&#x1f525; 本文由 程序喵正在路上 原创&#xff0c;CSDN首发&#xff01; &#x1f496; 系列专栏&#xff1a;Java从入门到大牛 &#x1f320; 首发时间&#xff1a;2023年11月18日 &#x1f98b; 欢迎关注&#x1f5b1;点赞&#x1f44d;收藏&#x1f31f;留言&#x1f4…...

UE5 C++报错:is not currently enabled for Live Coding

解决办法&#xff1a; 再次打开项目&#xff0c;以此法打开&#xff1a;...

mysql服务器数据同步

在Linux和Windows之间实现MySQL服务器数据的同步。下面是一些常见的方法和工具&#xff1a; 复制&#xff08;Replication&#xff09;&#xff1a;MySQL复制是一种常见的数据同步技术&#xff0c;可用于将一个MySQL服务器的数据复制到其他服务器。您可以设置主服务器&#xff…...

Docker Golang 开发环境搭建指南

Docker Golang 开发环境搭建指南 概述 在 Golang 开发中&#xff0c;搭建合适的开发环境是非常重要的。然而&#xff0c;由于 Golang 的跨平台特性&#xff0c;不同操作系统之间的配置差异可能会导致环境搭建过程变得复杂。为了简化这个过程并保持开发环境的一致性&#xff0…...

MFC保存窗口客户区为图片

首先的窗口输出一些内容&#xff1b; 菜单单击函数代码&#xff1b; void CgetmypicView::OnTestGetmypic() {// TODO: 在此添加命令处理程序代码HWND hwnd this->GetSafeHwnd();HDC hDC ::GetWindowDC(hwnd);//获取DC RECT rect;::GetClientRect(hwnd, &rect)…...

JAVA安全之Shrio550-721漏洞原理及复现

前言 关于shrio漏洞&#xff0c;网上有很多博文讲解&#xff0c;这些博文对漏洞的解释似乎有一套约定俗成的说辞&#xff0c;让人云里来云里去&#xff0c;都没有对漏洞产生的原因深入地去探究..... 本文从现象到本质&#xff0c;旨在解释清楚Shrio漏洞是怎么回事&#xff01…...

有Mac或无Mac电脑通用的获取安卓公钥的方案

从2023年9月开始&#xff0c;所有上架应用市场的app都需要进行APP备案。 其中后端服务器在阿里云的可以在阿里云备案&#xff0c;后端服务器在腾讯云的可以在腾讯云备案。但无论你是在什么云厂商里做备案&#xff0c;无一例外的是&#xff0c;无论是上架安卓应用还是上架IOS应…...

电池故障估计:Realistic fault detection of li-ion battery via dynamical deep learning

昇科能源、清华大学欧阳明高院士团队等的最新研究成果《动态深度学习实现锂离子电池异常检测》&#xff0c;用已经处理的整车充电段数据&#xff0c;分析车辆当前或近期是否存在故障。 思想步骤&#xff1a; 用正常电池的充电片段数据构造训练集&#xff0c;用如下的方式构造…...

微服务和Spring Cloud Alibaba介绍

1、微服务介绍 1.1 系统架构演变 随着互联网的发展&#xff0c;网站应用的规模也在不断的扩大&#xff0c;进而导致系统架构也在不断的进行变化。从互联网早起到现在&#xff0c;系统架构大体经历了下面几个过程: 单体应用架构 —> 垂直应用架构 —> 分布 式架构—>…...

【js】 lodash命名转换和封装

▒ 目录 ▒ &#x1f6eb; 导读需求开发环境 1️⃣ lodash转换函数h3与underscore比较 2️⃣ 实战&#xff1a;对象属性名转换函数封装单元测试 &#x1f6ec; 文章小结&#x1f4d6; 参考资料 &#x1f6eb; 导读 需求 爬虫中经常出现各种类型的命名&#xff0c;往往一个对象…...

RK3568驱动指南|第七篇 设备树-第67章 of操作函数实验:获取属性

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…...

vue3安装vue-router

环境 node 18.14.2 yarn 1.22.19 windows 11 vite快速创建vue项目 参考 安装vue-touter 官网 yarn add vue-router4src下新建router文件夹&#xff0c;该文件夹下新建index.ts // router/index.ts 文件 import { createRouter, createWebHashHistory, RouterOptions, Ro…...

〖大前端 - 基础入门三大核心之JS篇㊱〗- JavaScript 的DOM节点操作

说明&#xff1a;该文属于 大前端全栈架构白宝书专栏&#xff0c;目前阶段免费&#xff0c;如需要项目实战或者是体系化资源&#xff0c;文末名片加V&#xff01;作者&#xff1a;不渴望力量的哈士奇(哈哥)&#xff0c;十余年工作经验, 从事过全栈研发、产品经理等工作&#xf…...

【计算机基础】优雅的PPT就应该这样设计

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…...

Vatee万腾的科技征程:Vatee数字化创新的前沿探讨

在Vatee万腾的科技征程中&#xff0c;我们目睹了一场数字化创新的引领之旅&#xff0c;探讨了Vatee在科技前沿的独到见解。Vatee万腾不仅仅是一家科技公司&#xff0c;更是一支前行不辍的冒险队伍&#xff0c;通过不断突破自我&#xff0c;探索未知领域&#xff0c;引领着数字化…...

【PB续命05】WinHttp.WinHttpRequest的介绍与使用

0 WinHttp.WinHttpRequest简介 winhttp.winhttprequest是Windows操作系统中的一个API函数&#xff0c;用于创建和发送HTTP请求。它可以用于从Web服务器获取数据&#xff0c;或将数据发送到Web服务器。该函数提供了许多选项&#xff0c;例如设置请求头、设置代理服务器、设置超…...

【Linux】进程间是这样通信的--管道篇

TOC 目录 进程间通信的介绍 进程间通信的概念 进程间通信的目的 进程间通信的本质 进程间通信的分类 管道 什么是管道 匿名管道 pipe函数 匿名管道使用步骤 管道读写规则 管道的特点 1、管道内部自带同步与互斥机制 2、管道的生命周期随进程 3、管道提供的是流式…...

Python基础入门例程60-NP60 跳过列表的某个元素(循环语句)

最近的博文: Python基础入门例程59-NP59 提前结束的循环(循环语句)-CSDN博客 Python基础入门例程58-NP58 找到HR(循环语句)-CSDN博客 Python基础入门例程57-NP57 格式化清单(循环语句)-CSDN博客 目录 最近的博文: 描述...

三十二、W5100S/W5500+RP2040树莓派Pico<UPnP示例>

文章目录 1 前言2 简介2 .1 什么是UPnP&#xff1f;2.2 UPnP的优点2.3 UPnP数据交互原理2.4 UPnP应用场景 3 WIZnet以太网芯片4 UPnP示例概述以及使用4.1 流程图4.2 准备工作核心4.3 连接方式4.4 主要代码概述4.5 结果演示 5 注意事项6 相关链接 1 前言 随着智能家居、物联网等…...

2023.11.18 Hadoop之 YARN

1.简介 Apache Hadoop YARN &#xff08;Yet Another Resource Negotiator&#xff0c;另一种资源协调者&#xff09;是一种新的 Hadoop 资源管理器&#xff0c;它是一个通用资源管理系统和调度平台&#xff0c;可为上层应用提供统一的资源管理和调度。支持多个数据处理框架&…...

ceph 常用命令

bucket 常用命令 查看 realm &#xff08;区域&#xff09; radosgw-admin realm list输出 {"default_info": "43c462f5-5634-496e-ad4e-978d28c2x9090","realms": ["myrgw"] }radosgw-admin realm get{"id": "2cfc…...

6.8完全二叉树的节点个数(LC222-E)

算法&#xff1a; 如果不考虑完全二叉树的特性&#xff0c;直接把完全二叉树当作普通二叉树求节点数&#xff0c;其实也很简单。 递归法&#xff1a; 用什么顺序遍历都可以。 比如后序遍历&#xff08;LRV&#xff09;&#xff1a;不断遍历左右子树的节点数&#xff0c;最后…...

基于协作mimo系统的RM编译码误码率matlab仿真,对比硬判决译码和软判决译码

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..................................................................... while(Err < TL…...

Django模型层

模型层 与数据库相关的&#xff0c;用于定义数据模型和数据库表结构。 在Django应用程序中&#xff0c;模型层是数据库和应用程序之间的接口&#xff0c;它负责处理所有与数据库相关的操作&#xff0c;例如创建、读取、更新和删除记录。Django的模型层还提供了一些高级功能 首…...

计算机视觉的应用18-一键抠图人像与更换背景的项目应用,可扩展批量抠图与背景替换

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用18-一键抠图人像与更换背景的项目应用&#xff0c;可扩展批量抠图与背景替换。该项目能够让你轻松地处理和编辑图片。这个项目的核心功能是一键抠图和更换背景。这个项目能够自动识别图片中的主体&…...

Redis(哈希Hash和发布订阅模式)

哈希是一个字符类型字段和值的映射表。 在Redis中&#xff0c;哈希是一种数据结构&#xff0c;用于存储键值对的集合。哈希可以理解为一个键值对的集合&#xff0c;其中每个键都对应一个值。哈希在Redis中的作用主要有以下几点&#xff1a; 1. 存储对象&#xff1a;哈希可以用…...

php正则表达式汇总

php正则表达式有"/pattern/“、”“、”$“、”.“、”[]“、”[]“、”[a-z]“、”[A-Z]“、”[0-9]“、”\d"、“\D”、“\w”、“\W”、“\s”、“\S”、“\b”、“*”、“”、“?”、“{n}”、“{n,}”、“{n,m}”、“\bword\b”、“(pattern)”、“x|y"和…...

Python与ArcGIS系列(八)通过python执行地理处理工具

目录 0 简述1 脚本执行地理处理工具2 在地理处理工具间建立联系0 简述 arcgis包含数百种可以通过python脚本执行的地理处理工具,这样就通过python可以处理复杂的工作和批处理。本篇将介绍如何利用arcpy实现执行地理处理工具以及在地理处理工具间建立联系。 1 脚本执行地理处理…...

cocos----刚体

刚体&#xff08;Rigidbody&#xff09; 刚体&#xff08;Rigidbody&#xff09;是运动学&#xff08;Kinematic&#xff09;中的一个概念&#xff0c;指在运动中和受力作用后&#xff0c;形状和大小不变&#xff0c;而且内部各点的相对位置不变的物体。在 Unity3D 中&#xff…...

【SAP-HCM】--HR人员信息导入函数

人员基本信息导入函数&#xff1a;HR_MAINTAIN_MASTERDATA 人员其他信息类型导入函数&#xff1a;HR_INFOTYPE_OPERATION 不逼逼&#xff0c;直接上代码&#xff0c;这两个函数还是相对简单易懂的 *根据操作类型查找对应的T529A 操作类型对应的值IF gt_alv IS NOT INITIAL.S…...

【开源】基于JAVA的大学兼职教师管理系统

项目编号&#xff1a; S 004 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S004&#xff0c;文末获取源码。} 项目编号&#xff1a;S004&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 学生教师管…...

Pyhon函数

import time # # for i in range(1,10): # j1 # for j in range(1,i1): # print(f"{i}x{j}{i*j} " ,end) # print() #复用&#xff0c;代码&#xff0c;精简&#xff0c;复用度高def j99(n1,max10): for i in range(n,max):jifor j in ran…...

使用vuex完成小黑记事本案例

使用vuex完成小黑记事本案例 App.vue <template><div id"app"><TodoHeader></TodoHeader><TodoMain ></TodoMain><TodoFooter></TodoFooter></div> </template><script> import TodoMain from …...

进阶理解:leetcode115.不同的子序列(细节深度)

这道题是困难题&#xff0c;本章是针对于动态规划解决&#xff0c;对于思路进行一个全面透彻的讲解&#xff0c;但是并不是对于基础讲解思路&#xff0c;而是渗透到递推式和dp填数的详解&#xff0c;如果有读者不清楚基本的解题思路&#xff0c;请看我的这篇文章算法训练营DAY5…...