植物大战 二叉搜索树——C++
这里是目录标题
- 二叉排序树的概念
- 模拟二叉搜索树
- 定义节点类
- insert非递归
- Find
- erase(重点)
- 析构函数
- 拷贝构造(深拷贝)
- 赋值构造
- 递归
- FindR
- InsertR
- 二叉搜索树的应用
- k模型
- KV模型
二叉排序树的概念
单纯的二叉树存储数据没有太大的作用。
搜索二叉树作用很大。
搜索二叉树的一般都是用来查找。也可以用来排序,所以也叫做二叉排序树。
叫做二叉排序树的原因是因为他中序遍历是有序的。
因为中序的任何一颗子树,都要先走左子树,根,再走右子树。
搜索树因为数据不能冗余,所以也可以用来在插入的时候去重。
因为左子树<根<右子树,所以走中序出来,就是排序好的结果。
搜索二叉树要满足:
任意一颗子树都要满足,左子树的值小于根,右子树的值大于根。
优点:查找速度非常快。查找一个值,最多查找高度次,但是它的查找速度是O(n)。因为它有可能是单边树。所以后面会有一个平衡搜索二叉树,不如AVL树,红黑树。
但是我们要从搜索二叉树学起。
模拟二叉搜索树
搜索树的模板参数喜欢用k。k表示关键词的意思,因为喜欢搜索。
定义节点类
需要先定一个节点类。
template<class K>
struct BSTNode
{BSTNode<K>* _pLeft;BSTNode<K>* _pRight;K _key;
};
然后开始写二叉树的增删查改。
insert非递归
原则上插入不能有相同的数据插入。
搜索二叉树的插入顺序会影响效率。一般有序的话会影响。
为了能够找到cur的上一个结点,所以需要再定义个parent的节点。
template <class K>
class BSTree
{typedef BSTreeNode Node;//名字优化
public:bool Insert(const K& key){//如果根节点为空if (_root == nullptr){//new的时候直接可以填值。_root = new Node(key);return bool;}//否则开始Node* cur = _root;Node* parent = nullptr;while (cur){//如果在左边if (key > cur->_key){parent = cur;cur = cur->_right;}//如果在右边else if(key < cur->_key){parent = cur;cur = cur->_left;}//不允许数据冗余else{return false;}}//循环结束,new一个空间.cur = new Node(key);//不知道链接到父亲的左边和右边。//这时候就需要再比较一次if (key > parent->_key){parent->_right = cur;}else{parent->_left = cur;}return true;}
private:Node* _root = nullptr;//根节点
};
C++的根节点是私有的,封装了。所以没办法访问。
可以提供函数。也可以套一层。用_InOrder。
然后把_InOrder函数设为私有。
这样就不用传参了。
Find
查找值更简单。
bool Find(const K& key){Node* cur = _root;while(cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return true;}}return false;}
erase(重点)
搜索树前面的问题都不算问题,最大的问题在于删除数据。删除数据是一个非常麻烦的事情。
1.删叶子节点最好删。
2.删只有一个孩子的也挺好删。只有一个孩子的话,托付给父亲就行,和Linux的托孤有点相似。
总结:没有孩子或者只有一个孩子的时候可以直接删除。
3.不好删的是:
假如有两个孩子则不好删。
比如删除3。3有两个孩子。3的父亲8管不了两个孩子,因为8右子树也有孩子。
这时候需要用替换法删除。
替换法删除:
找谁替换呢?
找左子树的最大值结点。或者右子树的最小值结点。
为什么?
因为一棵搜索二叉树,最左边就是最小的值。最右边是最大的值。
关键理解:左子树的最大值结点做父亲可以满足比左子树的任意一个结点的值都大,同时随便拿出左子树的任意一个结点都比右子树小。
理解了上面的。有人找出了规律。
重点:
分三种情况
1.假如删除的节点的左子树为空(包括两个节点都为空的情况)。
2.假如删除的节点的右子树为空。(要注意假如是根节点的情况)
3.假如删除的节点的左右子树都不为空(替换法删除)。
具体遇到的bug需要根据实际图来解决。上面的三种情况只是个大概。
//非递归删除erasebool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while(cur){if(key > cur->_key){parent = cur;cur = cur->_right;}else if(key < cur->_key) {parent = cur;cur = cur->_left;}else{//一个孩子 假如 左为空if(cur->_left == nullptr){if(cur == _root){_root = cur->_right;}else{if(cur == parent->_left){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}//假如右为空else if(cur->_right == nullptr){if(cur == _root){_root = cur->_left;}else{if(cur == parent->_left){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}//两个孩子都不为空else{//右子树最小节点替代Node* minParent = cur;Node* minRight = cur->_right;while(minRight->_left){minParent = minRight;minRight = minRight->_left;}swap(minRight->_key, cur->_key);if(minParent->_left == minRight){minParent->_left = minRight->_right;}else{minParent->_right = minRight->_right;}delete minRight;}return true;}}return false;}
析构函数
因为没有参数,无法调用析构函数递归,所以需要套一层进行递归。
private:
void DestortTree(Node* root)
{if(root == nullptr)return;DestoryTree(root->_left);DestoryTree(root->_right);delete root;
}
public:
~BSTree()
{DestoryTree(_root);_root = nullptr;
}
拷贝构造(深拷贝)
注意:只要有了拷贝构造就不会再生成默认的构造函数了,所以为了写拷贝构造函数,需要先写一个构造函数。
这时候就要显式写一个构造函数。或者可以用C++11的关键字default来强制生成默认构造
BSTree() = default;
假如我们不写拷贝构造函数,会默认生成构造函数进行浅拷贝。
为了保证树的形状,只能用前序遍历(根 左子树 右子树)递归拷贝。
private:
Node* CopyTree(Node* root)
{if(root == nullptr)return nullptr;Node* copyNode = new Node(root->key);copyNode->_left = CopyTree(root->_left);copyNode->_right = CopyTree(root->_right);return copyNode;
}
public:
BSTree(const BSTree<K>& t)
{_root = CopyTree(t._root);
}
赋值构造
// t1 = t2
BSTree<K>& operator=(BSTree<K> t)
{swap(_root, t._root);return *this;
}
递归
FindR
返回下表的原因是因为要修改,但是这个树不需要修改,修改会破坏掉结构。所以返回bool值就ok。
C++类只要走递归一般都要套一层。不套一层一般都无法走递归。
InsertR
bool InsertR(const K& key){return _InsertR(_root, key);}bool _InsertR(Node*& root, const K& key){if(root == nullptr){root = new Node(key);return true;}if(root->_key < key)return _InsertR(root->_right, key);else if(root->_key > key)return _InsertR(root->_left, key);elsereturn false;}
二叉搜索树的应用
k模型
k模型只有key作为关键码,结构中只需要存储key杰克,关键码即为需要搜索到的值,比如给一个单词word,检查该单词是否拼写正确。
实质:就是判断K在不在这个系统中
K模型也可以用来去重+排序,
KV模型
KV模型的每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。
1、比如英汉词典中的英文和中文的对应关系,构成了<word,chinese> 的键值对
2、统计单词出现的次数,<word, count>的关系就是一个键值对。
再比如高铁刷身份证进站。
相关文章:

植物大战 二叉搜索树——C++
这里是目录标题二叉排序树的概念模拟二叉搜索树定义节点类insert非递归Finderase(重点)析构函数拷贝构造(深拷贝)赋值构造递归FindRInsertR二叉搜索树的应用k模型KV模型二叉排序树的概念 单纯的二叉树存储数据没有太大的作用。 搜索二叉树作用很大。 搜索二叉树的一般都是用…...
[MatLab]矩阵运算和程序结构
一、矩阵 1.定义 矩阵以[ ]包含,以空格表示数据分隔,以;表示换行。 A [1 2 3 4 5 6] B 1:2:9 %1-9中的数,中间是步长(不能缺省) C repmat(B,3,2) %将B横向重复2次,纵向重复2次 D ones(2,4) …...

【Leedcode】栈和队列必备的面试题(第四期)
【Leedcode】栈和队列必备的面试题(第四期) 文章目录【Leedcode】栈和队列必备的面试题(第四期)一、题目二、思路图解1.声明结构体2.循环链表开辟动态结构体空间3.向循环队列插入一个元素4.循环队列中删除一个元素5. 从队首获取元…...

Windows Server 2016搭建文件服务器
1:进入系统在服务器管理器仪表盘中添加角色和功能。 2:下一步。 3:继续下一步。 4:下一步。 5:勾选Web服务器(IIS) 6:添加功能。 7:下一步。 8:下一步。 9:下一步。 10&a…...

零基础学SQL(十一、视图)
目录 前置建表 一、什么是视图 二、为什么使用视图 三、视图的规则和限制 四、视图的增删改查 五、视图数据的更新 前置建表 CREATE TABLE student (id int NOT NULL AUTO_INCREMENT COMMENT 主键,code varchar(255) NOT NULL COMMENT 学号,name varchar(255) DEFAULT NUL…...

web,h5海康视频接入监控视频流记录三(后台node取流)
前端vue,接入ws视频播放 云台控制 ,回放预览,都是需要调对应的海康接口。相当于,点击时,请求后台写好的接口,接口再去请求海康的接口 调用云台控制是,操作一次,不会自己停止&#x…...

网络安全从入门到精通:30天速成教程到底有多狠?你能坚持下来么?
毫无疑问,网络安全是当下最具潜力的编程方向之一。对于许多未曾涉足计算机编程的领域「小白」来说,深入地掌握网络安全看似是一件十分困难的事。至于一个月能不能学会网络安全,这个要看个人,对于时间管理不是很高的,肯…...

世界上最流行的编程语言,用户数超过Python,Java,JavaScript,C的总和!
世界上最流行的编程语言是什么? Python? Java? JavaScript? C?都不是,是Excel!外媒估计,全球有12亿人使用微软的Office套件,其中估计有7.5亿人使用Excel!可是Excel不就是能写点儿公式&#x…...

杂谈:created中两次数据修改,会触发几次页面更新?
面试题:created生命周期中两次修改数据,会触发几次页面更新? 一、同步的 先举个简单的同步的例子: new Vue({el: "#app",template: <div><div>{{count}}</div></div>,data() {return {count…...

原生JS实现拖拽排序
拖拽(这两个字看了几遍已经不认识了) 说到拖拽,应用场景不可谓不多。无论是打开电脑还是手机,第一眼望去的界面都是可拖拽的,靠拖拽实现APP或者应用的重新布局,或者拖拽文件进行操作文件。 先看效果图&am…...
Coredump-N: corrupted double-linked list
文章目录 问题安装debuginfo之后分析参数确定确定代码逻辑解决问题 今天碰到一例: #0 0xf7f43129 in __kernel_vsyscall () #1 0xf6942b16 in raise () from /lib/libc.so.6 #2 0xf6928e64 in abort () from /lib/libc.so.6 #3 0xf6986e8c in __libc_message () from /lib/li…...

5个好用的视频素材网站
推荐五个高质量视频素材网站,免费、可商用,赶紧收藏起来! 1、菜鸟图库 视频素材下载_mp4视频大全 - 菜鸟图库 网站素材非常丰富,有平面、UI、电商、办公、视频、音频等相关素材,视频素材质量很高,全部都是…...

使用码匠连接一切|二
目录 Elasticsearch Oracle ClickHouse DynamoDB CouchDB 关于码匠 作为一款面向开发者的低代码平台,码匠提供了丰富的数据连接能力,能帮助用户快速、轻松地连接和集成多种数据源,包括关系型数据库、非关系型数据库、API 等。平台提供了…...
3.1.1 表的相关设计
文章目录1.表中实体与实体对应的关系2.实际案例分析3.表的实际创建4.总结1.表中实体与实体对应的关系 一对多 如一个班级对应多名学生,一个客户拥有多个订单等这种类型表的建表要遵循主外键关系原则,即在从表创建一个字段,此字段作为外键指向…...

Vue3 企业级项目实战:认识 Spring Boot
Vue3 企业级项目实战 - 程序员十三 - 掘金小册Vue3 Element Plus Spring Boot 企业级项目开发,升职加薪,快人一步。。「Vue3 企业级项目实战」由程序员十三撰写,2744人购买https://s.juejin.cn/ds/S2RkR9F/ 越来越流行的 Spring Boot Spr…...

Swagger2实现配置Header请求头
效果 实现 大家使用swagger肯定知道在代码中会写一个 SwaggerConfig 配置类,如果没有这个类swagger指定也用不起来,所以在swagger中配置请求头也是在这个 SwaggerConfig 中操作。 1、要实现配置请求头在配置swagger的Docket的bean实例中添加一个 globa…...

4-1 SpringCloud快速开发入门:RestTemplate类详细解读
RestTemplate类详细解读 RestTemplate 的 GET 请求 Get 请求可以有两种方式: 第一种:getForEntity 该方法返回一个 ResponseEntity对象,ResponseEntity是 Spring 对 HTTP 请求响应的封装,包括了几个重要的元素,比如响…...

【IDEA】【工具】幸福感UP!开发常用的工具 插件/网站/软件
IDEA 插件 CodeGlance Pro —— 代码地图 CodeGlance是一款非常好用的代码地图插件,可以在代码编辑区的右侧生成一个竖向可拖动的代码缩略区,可以快速定位代码的同时,并且提供放大镜功能。 使用:可以通过Settings—>Other Settings—&g…...
【蓝桥杯集训·每日一题】AcWing 1562. 微博转发
文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴宽搜BFS一、题目 1、原题链接 1562. 微博转发 2、题目描述 微博被称为中文版的 Twitter。 微博上的用户既可能有很多关注者,也可能关注很多其他用户。 因此&am…...

[busybox] busybox生成一个最精简rootfs(下)
书接上回:[busybox] busybox生成一个最精简rootfs(上) 本篇介绍几个rootfs中用到的“不是那么重要的”几个文件。 9 /etc/shadow 和 /etc/passwd 曾经,/etc/passwd 文件用于存储独立 Linux 系统中的所有登录信息。 后来,由于以下原因&…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

React、Git、计网、发展趋势等内容——前端面试宝典(字节、小红书和美团)
React React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍,详细解释 用户: React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么,Fiber架构,面试向面试官介绍&#x…...
Angular中Webpack与ngx-build-plus 浅学
Webpack 在 Angular 中的概念 Webpack 是一个模块打包工具,用于将多个模块和资源打包成一个或多个文件。在 Angular 项目中,Webpack 负责将 TypeScript、HTML、CSS 等文件打包成浏览器可以理解的 JavaScript 文件。Angular CLI 默认使用 Webpack 进行项目…...