d3.js与echarts对比
D3.js 和 ECharts 是两种常用的数据可视化工具,它们有着不同的优缺点:
D3.js:
优点:
功能强大,提供了极高的灵活性和定制性,支持多种图表类型,如柱状图、饼图、散点图、树图、网络图等。
可以实现比较复杂的图形,如动画、交互和数据绑定等。
可以与其他 JavaScript 库结合使用,如 Vue、React、Angular 等。
缺点:
学习曲线较陡峭,学习难度较大,需要对 HTML、CSS、JavaScript 等知识有扎实的基础。
需要自己编写代码实现图表,可能需要花费更多的时间和精力。
ECharts:
优点:
学习难度较低,可以快速上手,提供了丰富的文档和案例。
支持多种图表类型,提供了丰富的配置项,可以自定义外观和交互。
可以使用 JSON 格式配置图表,易于维护和复用。
缺点:
功能不如 D3.js 强大,不支持完全定制图形,对于一些特殊需求可能存在局限性。
适用于小规模和中等规模的项目,如果需要处理大量的数据或者进行复杂的数据分析,则可能不够灵活。
总体来说,选择 D3.js 还是 ECharts 取决于你的项目需求和个人技能水平。如果你需要实现复杂的图形,或者需要更高的灵活性和定制性,那么 D3.js 更适合你;如果你需要快速构建图表,或者不需要实现复杂的图形,那么 ECharts 更适合你。
相关文章:
d3.js与echarts对比
D3.js 和 ECharts 是两种常用的数据可视化工具,它们有着不同的优缺点: D3.js: 优点: 功能强大,提供了极高的灵活性和定制性,支持多种图表类型,如柱状图、饼图、散点图、树图、网络图等。 可以…...
机器学习之K-means原理详解、公式推导、简单实例(python实现,sklearn调包)
目录1. 聚类原理1.1. 无监督与聚类1.2. K均值算法2. 公式推导2.1. 距离2.2. 最小平方误差3. 实例3.1. python实现3.2. sklearn实现4. 运行(可直接食用)1. 聚类原理 1.1. 无监督与聚类 在这部分我今天主要介绍K均值聚类算法,在这之前我想提一…...
OBS 进阶 一个从自定义对话框中 传参到插件的例子
目录 一、自定义对话框,传参综合例子 1、自定义对话框 1)自定义对话框类...
在Linux和Windows上编译datax-web-ui源码
记录:375场景:在CentOS 7.9操作系统上,使用apache-maven-3.8.7安装编译datax-web-ui源码。在Windows上操作系统上,使用apache-maven-3.8.7编译datax-web-ui源码。版本:JDK 1.8 node-v14.17.3 npm-6.14.13datax-web-ui开…...
React组件生命周期管理
组件生命,就是组件在不同阶段提供对应的钩子函数,来处理逻辑操作。比如初始化阶段,我们需要初始化组件相关的状态和变量。组件销毁阶段时,我们需要把一些数据结构销毁来节约内存。 React组件生命周期 React组件生命周期分为三个阶段:挂载阶段【Mount】、更新阶段【Updat…...
Linux:全志H3图像codec使用笔记
1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做任何承诺。 2. 图像 codec 概述 图像编解码器(codec) 包含 Encoder 和 Decoder 两部分功能。我们用下列分别说明 Encoder 和 Decoder 的工作方式。 ----------…...
【Python小游戏】通过这款专为程序员设计的《极限车神》小游戏,你的打字速度可以赢过专业录入员,这个秘密98%的人都不知道哦~(爆赞)
导语 哈喽,我是你们的木木子👸! 今天小编要为大家介绍一款小编自己用代码码出来的赛车风格的打字小游戏 取名暂定为《🚗极限车神🚗》打字小游戏。 这款Pygame小游戏在玩法上可以说十分创新,不仅能游戏还…...
Springboot扩展点之BeanPostProcessor
前言 Springboot(Spring)的扩展点其实有很多,但是都有一个共同点,都是围绕着Bean和BeanFactory(容器)展开的,其实这也很好理解,Spring的核心是控制反转、依赖注入、面向切面编程&…...
Fluent Python 笔记 第 3 章 字典和集合
3.1 泛映射类型 只有可散列 的数据类型才能用作这些映射里的键 字典构造方法: >>> a dict(one1, two2, three3) >>> b {one: 1, two: 2, three: 3} >>> c dict(zip([one, two, three], [1, 2, 3])) >>> d dict([(two, 2…...
大型物流运输管理系统源码 TMS源码
大型物流运输管理系统源码 TMS是一套适用于物流公司的物流运输管理系统,涵盖物流公司内部从订单->提货->运单->配车->点到->预约->签收->回单->代收货款的全链条管理系统。 菜单功能 一、运营管理 1、订单管理:用于客户意向订…...
PCIE总线
PCIE总线记录描述PCI分类与速度PCIE连接拓扑与角色PCIE接口定义PCIE数据传输方式与中断在PCIE中有两种数据传输方式:PCIE中断:PCIE协议栈与工作流程PCIE地址空间分类实例分析PCIE两种访问方式描述 PCI-Express(peripheral component interconnect expre…...
Android IO 框架 Okio 的实现原理,如何检测超时?
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 前言 大家好,我是小彭。 在上一篇文章里,我们聊到了 Square 开源的 I/O 框架 Okio 的三个优势:精简且全面的 API、基于共享的缓冲区设计以…...
简单介绍反射
1.定义Java的反射机制是在运行状态中,对于任意一个类,都知道这个类的所有属性和方法;对于任意一个对象,都能调用它的任意方法和属性,既然能拿到,我们就可以修改部分类型信息;这种动态获取信息的…...
PyTorch学习笔记:nn.MSELoss——MSE损失
PyTorch学习笔记:nn.MSELoss——MSE损失 torch.nn.MSELoss(size_average None,reduce None,reduction mean)功能:创建一个平方误差(MSE)损失函数,又称为L2损失: l(x,y)L{l1,…,lN}T,ln(xn−yn)2l(x,y)L…...
apache和nginx的TLS1.0和TLS1.1禁用处理方案
1、TLS1.0和TLS1.1是什么? TLS协议其实就是网络安全传输层协议,用于在两个通信应用程序之间提供保密性和数据完整性,TLS 1. 0 和TLS 1. 1 是分别是96 年和 06 年发布的老版协议。 2、为什么要禁用TLS1.0和TLS1.1传输协议 TLS1.0和TLS1.1协…...
K_A12_002 基于STM32等单片机采集光敏电阻传感器参数串口与OLED0.96双显示
K_A12_002 基于STM32等单片机采集光敏电阻传感器参数串口与OLED0.96双显示一、资源说明二、基本参数参数引脚说明三、驱动说明IIC地址/采集通道选择/时序对应程序:四、部分代码说明1、接线引脚定义1.1、STC89C52RC光敏电阻传感器模块1.2、STM32F103C8T6光敏电阻传感器模块五、基…...
《机器学习》学习笔记
第 2 章 模型评估与选择 2.1 经验误差与过拟合 精度:精度1-错误率。如果在 mmm 个样本中有 aaa 个样本分类错误,则错误率 Ea/mEa/mEa/m,精度 1−a/m1-a/m1−a/m。误差:一般我们把学习器的实际预测输出与样本的真实输出之间的差…...
前端卷算法系列(一)
前端卷算法系列(一) 两数之和 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同…...
【机器学习】聚类算法(理论)
聚类算法(理论) 目录一、概论1、聚类算法的分类2、欧氏空间的引入二、K-Means算法1、算法思路2、算法总结三、DBSCAN算法1、相关概念2、算法思路3、算法总结四、实战部分一、概论 聚类分析,即聚类(Clustering)…...
Docker-用Jenkins发版Java项目-(1)Docke安装Jenkins
文章目录前言环境背景操作流程docker安装及jenkins软件安装jenkins配置登录配置安装插件及创建账号前言 学海无涯,旅“途”漫漫,“途”中小记,如有错误,敬请指出,在此拜谢! 最近新购得了M2的MAC,…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
