Leetcode.1223 掷骰子模拟
题目链接
Leetcode.1223 掷骰子模拟 Rating : 2008
题目描述
有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。
不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i 的次数不能超过 rollMax[i](i 从 1 开始编号)。
现在,给你一个整数数组 rollMax和一个整数 n,请你来计算掷 n次骰子可得到的不同点数序列的数量。
假如两个序列中至少存在一个元素不同,就认为这两个序列是不同的。由于答案可能很大,所以请返回 模 10^9 + 7之后的结果。
示例 1:
输入:n = 2, rollMax = [1,1,2,2,2,3]
输出:34
解释:我们掷 2 次骰子,如果没有约束的话,共有 6 * 6 = 36 种可能的组合。但是根据 rollMax 数组,数字 1 和 2 最多连续出现一次,所以不会出现序列 (1,1) 和 (2,2)。因此,最终答案是 36-2 = 34。
示例 2:
输入:n = 2, rollMax = [1,1,1,1,1,1]
输出:30
示例 3:
输入:n = 3, rollMax = [1,1,1,2,2,3]
输出:181
提示:
- 1<=n<=50001 <= n <= 50001<=n<=5000
- rollMax.length==6rollMax.length == 6rollMax.length==6
- 1<=rollMax[i]<=151 <= rollMax[i] <= 151<=rollMax[i]<=15
分析:
使用 动态规划 的方式求解。
我们定义 f(i,j,times)f(i,j,times)f(i,j,times) 为投掷了 i次骰子,并且第 i个骰子的点数是 j,且这个 j的连续出现次数是 times的不同序列数量。
按照定义,最终返回的结果为 f(n,1,1)+f(n,1,2)+...f(n,1,rollMax[0])...f(n,2,1)+f(n,2,2)...+f(n,2,rollMax[1]+...f(n,6,rollMax[5])f(n,1,1) + f(n,1,2) + ...f(n,1,rollMax[0])...f(n,2,1)+f(n,2,2)...+f(n,2,rollMax[1] + ...f(n,6,rollMax[5])f(n,1,1)+f(n,1,2)+...f(n,1,rollMax[0])...f(n,2,1)+f(n,2,2)...+f(n,2,rollMax[1]+...f(n,6,rollMax[5])。
即 ∑j=16∑times=1rollMax[j−1]f(n,j,times)\sum_{j=1}^{6}\sum_{times=1}^{rollMax[j-1]}f(n,j,times)∑j=16∑times=1rollMax[j−1]f(n,j,times)。
状态转移:
- 当 当前点
k不等于 前一个点j时,f(i,k,1)=(f(i,k,1)+f(i−1,j,times))mod109+7f(i,k,1) = (f(i,k,1)+f(i-1,j,times)) mod 10^9+7f(i,k,1)=(f(i,k,1)+f(i−1,j,times))mod109+7 - 当 当前点
k等于 前一个点j并且times+1小于等于rollMax[j-1]时,f(i,j,times+1)=(f(i,j,times+1)+f(i−1,j,times))mod109+7f(i,j,times+1) = (f(i,j,times+1) + f(i-1,j,times)) mod 10^9+7f(i,j,times+1)=(f(i,j,times+1)+f(i−1,j,times))mod109+7
时间复杂度:O(n∗36∗15)O(n * 36 * 15)O(n∗36∗15)
C++代码:
const int MOD = 1e9+7;
using LL = long long;
class Solution {
public:int dieSimulator(int n, vector<int>& rollMax) {int f[n+1][7][16];memset(f,0,sizeof f);//初始化只投掷一次骰子的情况for(int i = 1;i <= 6;i++){f[1][i][1] = 1;}for(int i = 2;i <= n;i++){for(int j = 1;j <= 6;j++){for(int times = 1;times <= rollMax[j-1];times++){for(int k = 1;k <= 6;k++){if(j != k) f[i][k][1] = (f[i][k][1] + f[i-1][j][times])%MOD;else if(times + 1 <= rollMax[j - 1]){f[i][j][times+1] = (f[i][j][times+1] + f[i-1][j][times])%MOD;}}}}}LL ans = 0;//统计总的数量for(int j = 1;j <= 6;j++){for(int times = 1;times <= rollMax[j-1];times++) ans += f[n][j][times];}return ans % MOD;}
};
Java代码:
class Solution {private final int MOD = 1000_000_000+7;public int dieSimulator(int n, int[] rollMax) {int [][][] f = new int[n+1][7][16];for(int i = 1;i <= 6;i++){f[1][i][1] = 1;}for(int i = 2;i <= n;i++){for(int j = 1;j <= 6;j++){for(int times = 1;times <= rollMax[j-1];times++){for(int k = 1;k <= 6;k++){if(j != k) f[i][k][1] = (f[i][k][1] + f[i-1][j][times])%MOD;else if(times + 1 <= rollMax[j - 1]){f[i][j][times+1] = (f[i][j][times+1] + f[i-1][j][times])%MOD;}}}}}long ans = 0;for(int j = 1;j <= 6;j++){for(int times = 1;times <= rollMax[j-1];times++) ans += f[n][j][times];}return (int)(ans % MOD);}
}
相关文章:
Leetcode.1223 掷骰子模拟
题目链接 Leetcode.1223 掷骰子模拟 Rating : 2008 题目描述 有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数。 不过我们在使用它时有个约束,就是使得投掷骰子时,连续 掷出数字 i 的次数不能超过 rollMax[i](i 从 1…...
数据分析到底该怎么学呢?讲真,真不难!
这几年,“数据分析”是很火啊,在这个数据驱动一切的时代,数据挖掘和数据分析就是这个时代的“淘金”,懂数据分析、拥有数据思维,往往成了大厂面试的加分项。 比如通过数据分析,我们可以更好地了解用户画像…...
活动星投票紫砂新青年制作一个投票活动
“紫砂新青年”网络评选投票_免费链接投票_作品投票通道_扫码投票怎样进行现在来说,公司、企业、学校更多的想借助短视频推广自己。通过微信投票小程序,网友们就可以通过手机拍视频上传视频参加活动,而短视频微信投票评选活动既可以给用户发挥…...
Git | 在IDEA中使用Git
目录 一、在IDEA中配置Git 1.1 配置Git 1.2 获取Git仓库 1.3 将本地项目推送到远程仓库 1.4 .gitignore文件的作用 二、本地仓库操作 2.1 将文件加入暂存区 2.2 将暂存区的文件提交到版本库 2.3 查看日志 三、远程仓库操作 3.1 查看和添加远程仓库 3.2 推送至远程仓…...
< Linux >:Linux 进程概念 (4)
目录 五、孤儿进程 六、进程优先级 6.1、基本概念 6.2、查看时实系统进程 6.3、PRI and NI 七、其他概念 四、X 状态:死亡状态 所谓进程处于 X 状态(死亡状态)代表的就是该进程已经死亡了,即操作系统可以随时回收它的资源(操作系统也可以…...
七、Java框架之MyBatisPlus
黑马课程 文章目录1. MyBatisPlus入门1.1 MyBatisPlus入门案例步骤1:创建spring boot工程步骤2:配置application.yml步骤3:创建数据库表(重点)步骤4:编写dao层步骤5:测试1.2 标准数据层开发标准…...
C语言柔性数组
目录什么是柔性数组柔性数组的使用什么是柔性数组 柔性数组是在C99中定义的 结构体的最后一个元素允许是未知大小的数组,这就叫柔性书组 柔性数组的长度可以写成0,也可以不规定数组长度 下面两种写法都是正确的 struct S { int i; int a[0];//柔性数…...
支付功能测试用例
Author:ChatGPT用例设计下面是一些支付功能测试用例:账户余额检查:测试用户的账户余额是否准确。支付方式选择:测试用户可以使用的支付方式,包括信用卡、借记卡、电子钱包等。支付金额确认:测试用户输入的支…...
牛客网Python篇数据分析习题(一)
1.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔): Nowcoder_ID:用户ID Level:等级 Achievement_value:成就值 Num_of_exercise&a…...
【C语言】“指针类型”与“野指针”
文章目录一、指针是什么❔二、指针和指针类型1.指针-整数2.指针解引用三.野指针1.引起野指针的原因2.如果避免野指针完结一、指针是什么❔ 指针也就是 内存地址 ,在计算机上我们访问数据需要通过内存地址来访问,在C语言中,指针变量是用来存放…...
Linux:软链接和硬链接的理解
Linux通过命令行创建快捷方式使用的命令是ln,这里就涉及到了软链接和硬链接,确实有些不好理解,如果你也一样,那么可以继续看下去了 目录ln命令语法实操创建软链接:ln -s [源文件或目录][目标文件或目录]创建硬链接&…...
力扣HOT100 (1-5)
目录 1.两数之和 2.两数相加 拓展到牛客的TOP101的BM11( 链表相加(二)) 3.无重复的最长子串(牛客BM92) 解法1: 解法2: 4.寻找两个正序数组的中位数 5.最长回文子串 1.两数之和 思路:用Has…...
车载基础软件——AUTOSAR CP典型应用案例SOME/IP和TSN时间同步
我是穿拖鞋的汉子,魔都中坚持长期主义的一个屌丝工程师! 今天是2023年2月7日,上海还在下着雨,估计是到了梅雨时节(提前到来?),真想说句我劝天公重安排,不让梅雨早时来!!! 老规矩分享一段喜欢的文字,避免自己成为高知识低文化的工科男: “ 我们只需做的,是走好…...
【Linux】操作系统与进程的概念
目录 冯诺依曼体系 注意 为什么CPU不直接访问输入或输出设备? 跨主机间数据的传递 操作系统 管理 进程 描述进程 进程的查看和终止 bash 通过系统调用创建子进程 fork的辨析 冯诺依曼体系 🥖冯诺依曼结构也称普林斯顿结构,是一种将…...
(1分钟突击面试) 高斯牛顿、LM、Dogleg后端优化算法
高斯牛顿法 LM法 DogLeg方法编辑切换为居中添加图片注释,不超过 140 字(可选)知识点:高斯牛顿是线搜索方法 LM方法是信赖域方法。编辑切换为居中添加图片注释,不超过 140 字(可选)这个就是JTJ是…...
d3.js与echarts对比
D3.js 和 ECharts 是两种常用的数据可视化工具,它们有着不同的优缺点: D3.js: 优点: 功能强大,提供了极高的灵活性和定制性,支持多种图表类型,如柱状图、饼图、散点图、树图、网络图等。 可以…...
机器学习之K-means原理详解、公式推导、简单实例(python实现,sklearn调包)
目录1. 聚类原理1.1. 无监督与聚类1.2. K均值算法2. 公式推导2.1. 距离2.2. 最小平方误差3. 实例3.1. python实现3.2. sklearn实现4. 运行(可直接食用)1. 聚类原理 1.1. 无监督与聚类 在这部分我今天主要介绍K均值聚类算法,在这之前我想提一…...
OBS 进阶 一个从自定义对话框中 传参到插件的例子
目录 一、自定义对话框,传参综合例子 1、自定义对话框 1)自定义对话框类...
在Linux和Windows上编译datax-web-ui源码
记录:375场景:在CentOS 7.9操作系统上,使用apache-maven-3.8.7安装编译datax-web-ui源码。在Windows上操作系统上,使用apache-maven-3.8.7编译datax-web-ui源码。版本:JDK 1.8 node-v14.17.3 npm-6.14.13datax-web-ui开…...
React组件生命周期管理
组件生命,就是组件在不同阶段提供对应的钩子函数,来处理逻辑操作。比如初始化阶段,我们需要初始化组件相关的状态和变量。组件销毁阶段时,我们需要把一些数据结构销毁来节约内存。 React组件生命周期 React组件生命周期分为三个阶段:挂载阶段【Mount】、更新阶段【Updat…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
ui框架-文件列表展示
ui框架-文件列表展示 介绍 UI框架的文件列表展示组件,可以展示文件夹,支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项,适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...
【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...
高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...
__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.
这个警告表明您在使用Vue的esm-bundler构建版本时,未明确定义编译时特性标志。以下是详细解释和解决方案: 问题原因: 该标志是Vue 3.4引入的编译时特性标志,用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...
