(1分钟突击面试) 高斯牛顿、LM、Dogleg后端优化算法
高斯牛顿法 LM法 DogLeg方法

编辑切换为居中
添加图片注释,不超过 140 字(可选)
知识点:高斯牛顿是线搜索方法 LM方法是信赖域方法。

编辑切换为居中
添加图片注释,不超过 140 字(可选)
这个就是JTJ是Hessian矩阵的近似即可,知道这个就完事。这个的话也是推导出来两个公式,然后比较形式得出来的这个结论。

编辑切换为居中
添加图片注释,不超过 140 字(可选)
LM方法是信赖域的方法,主要是为了解决JTJ的问题,就是说可能JTJ不可逆,那么加上一个莱姆大*单位阵以后 相当于前面介绍的岭回归,那么这就保证了求逆运算。

编辑切换为居中
添加图片注释,不超过 140 字(可选)
这里的话就是上面这个公式,和高斯牛顿的区别就是多了一个莱姆达*单位阵。

编辑切换为居中
添加图片注释,不超过 140 字(可选)
这里的u起着阻尼的作用,就是说步长大了的话就放小点,步长小的话就放大点。
Dogleg方法

编辑切换为居中
添加图片注释,不超过 140 字(可选)
比较信赖域 高斯牛顿和最速下降之间的关系,然后来确定步长方向,最终找到最优解。

编辑切换为居中
添加图片注释,不超过 140 字(可选)
以上三个算法的总结,DogLeg方法是首选的比较好用的方法,然后LM和Dog-Leg方法都比高斯牛顿法要好。说明信赖域方法要好于线搜索的方法。这里有一个小的知识点回顾,就是线性化的话在slam中表达的意义是求雅可比,出自vins的辅导课程中。
相关文章:
(1分钟突击面试) 高斯牛顿、LM、Dogleg后端优化算法
高斯牛顿法 LM法 DogLeg方法编辑切换为居中添加图片注释,不超过 140 字(可选)知识点:高斯牛顿是线搜索方法 LM方法是信赖域方法。编辑切换为居中添加图片注释,不超过 140 字(可选)这个就是JTJ是…...
d3.js与echarts对比
D3.js 和 ECharts 是两种常用的数据可视化工具,它们有着不同的优缺点: D3.js: 优点: 功能强大,提供了极高的灵活性和定制性,支持多种图表类型,如柱状图、饼图、散点图、树图、网络图等。 可以…...
机器学习之K-means原理详解、公式推导、简单实例(python实现,sklearn调包)
目录1. 聚类原理1.1. 无监督与聚类1.2. K均值算法2. 公式推导2.1. 距离2.2. 最小平方误差3. 实例3.1. python实现3.2. sklearn实现4. 运行(可直接食用)1. 聚类原理 1.1. 无监督与聚类 在这部分我今天主要介绍K均值聚类算法,在这之前我想提一…...
OBS 进阶 一个从自定义对话框中 传参到插件的例子
目录 一、自定义对话框,传参综合例子 1、自定义对话框 1)自定义对话框类...
在Linux和Windows上编译datax-web-ui源码
记录:375场景:在CentOS 7.9操作系统上,使用apache-maven-3.8.7安装编译datax-web-ui源码。在Windows上操作系统上,使用apache-maven-3.8.7编译datax-web-ui源码。版本:JDK 1.8 node-v14.17.3 npm-6.14.13datax-web-ui开…...
React组件生命周期管理
组件生命,就是组件在不同阶段提供对应的钩子函数,来处理逻辑操作。比如初始化阶段,我们需要初始化组件相关的状态和变量。组件销毁阶段时,我们需要把一些数据结构销毁来节约内存。 React组件生命周期 React组件生命周期分为三个阶段:挂载阶段【Mount】、更新阶段【Updat…...
Linux:全志H3图像codec使用笔记
1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做任何承诺。 2. 图像 codec 概述 图像编解码器(codec) 包含 Encoder 和 Decoder 两部分功能。我们用下列分别说明 Encoder 和 Decoder 的工作方式。 ----------…...
【Python小游戏】通过这款专为程序员设计的《极限车神》小游戏,你的打字速度可以赢过专业录入员,这个秘密98%的人都不知道哦~(爆赞)
导语 哈喽,我是你们的木木子👸! 今天小编要为大家介绍一款小编自己用代码码出来的赛车风格的打字小游戏 取名暂定为《🚗极限车神🚗》打字小游戏。 这款Pygame小游戏在玩法上可以说十分创新,不仅能游戏还…...
Springboot扩展点之BeanPostProcessor
前言 Springboot(Spring)的扩展点其实有很多,但是都有一个共同点,都是围绕着Bean和BeanFactory(容器)展开的,其实这也很好理解,Spring的核心是控制反转、依赖注入、面向切面编程&…...
Fluent Python 笔记 第 3 章 字典和集合
3.1 泛映射类型 只有可散列 的数据类型才能用作这些映射里的键 字典构造方法: >>> a dict(one1, two2, three3) >>> b {one: 1, two: 2, three: 3} >>> c dict(zip([one, two, three], [1, 2, 3])) >>> d dict([(two, 2…...
大型物流运输管理系统源码 TMS源码
大型物流运输管理系统源码 TMS是一套适用于物流公司的物流运输管理系统,涵盖物流公司内部从订单->提货->运单->配车->点到->预约->签收->回单->代收货款的全链条管理系统。 菜单功能 一、运营管理 1、订单管理:用于客户意向订…...
PCIE总线
PCIE总线记录描述PCI分类与速度PCIE连接拓扑与角色PCIE接口定义PCIE数据传输方式与中断在PCIE中有两种数据传输方式:PCIE中断:PCIE协议栈与工作流程PCIE地址空间分类实例分析PCIE两种访问方式描述 PCI-Express(peripheral component interconnect expre…...
Android IO 框架 Okio 的实现原理,如何检测超时?
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 前言 大家好,我是小彭。 在上一篇文章里,我们聊到了 Square 开源的 I/O 框架 Okio 的三个优势:精简且全面的 API、基于共享的缓冲区设计以…...
简单介绍反射
1.定义Java的反射机制是在运行状态中,对于任意一个类,都知道这个类的所有属性和方法;对于任意一个对象,都能调用它的任意方法和属性,既然能拿到,我们就可以修改部分类型信息;这种动态获取信息的…...
PyTorch学习笔记:nn.MSELoss——MSE损失
PyTorch学习笔记:nn.MSELoss——MSE损失 torch.nn.MSELoss(size_average None,reduce None,reduction mean)功能:创建一个平方误差(MSE)损失函数,又称为L2损失: l(x,y)L{l1,…,lN}T,ln(xn−yn)2l(x,y)L…...
apache和nginx的TLS1.0和TLS1.1禁用处理方案
1、TLS1.0和TLS1.1是什么? TLS协议其实就是网络安全传输层协议,用于在两个通信应用程序之间提供保密性和数据完整性,TLS 1. 0 和TLS 1. 1 是分别是96 年和 06 年发布的老版协议。 2、为什么要禁用TLS1.0和TLS1.1传输协议 TLS1.0和TLS1.1协…...
K_A12_002 基于STM32等单片机采集光敏电阻传感器参数串口与OLED0.96双显示
K_A12_002 基于STM32等单片机采集光敏电阻传感器参数串口与OLED0.96双显示一、资源说明二、基本参数参数引脚说明三、驱动说明IIC地址/采集通道选择/时序对应程序:四、部分代码说明1、接线引脚定义1.1、STC89C52RC光敏电阻传感器模块1.2、STM32F103C8T6光敏电阻传感器模块五、基…...
《机器学习》学习笔记
第 2 章 模型评估与选择 2.1 经验误差与过拟合 精度:精度1-错误率。如果在 mmm 个样本中有 aaa 个样本分类错误,则错误率 Ea/mEa/mEa/m,精度 1−a/m1-a/m1−a/m。误差:一般我们把学习器的实际预测输出与样本的真实输出之间的差…...
前端卷算法系列(一)
前端卷算法系列(一) 两数之和 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同…...
【机器学习】聚类算法(理论)
聚类算法(理论) 目录一、概论1、聚类算法的分类2、欧氏空间的引入二、K-Means算法1、算法思路2、算法总结三、DBSCAN算法1、相关概念2、算法思路3、算法总结四、实战部分一、概论 聚类分析,即聚类(Clustering)…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...
Linux基础开发工具——vim工具
文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...
iOS 项目怎么构建稳定性保障机制?一次系统性防错经验分享(含 KeyMob 工具应用)
崩溃、内存飙升、后台任务未释放、页面卡顿、日志丢失——稳定性问题,不一定会立刻崩,但一旦积累,就是“上线后救不回来的代价”。 稳定性保障不是某个工具的功能,而是一套贯穿开发、测试、上线全流程的“观测分析防范”机制。 …...
Three.js进阶之粒子系统(一)
一些特定模糊现象,经常使用粒子系统模拟,如火焰、爆炸等。Three.js提供了多种粒子系统,下面介绍粒子系统 一、Sprite粒子系统 使用场景:下雨、下雪、烟花 ce使用代码: var materialnew THRESS.SpriteMaterial();//…...
