当前位置: 首页 > news >正文

基于Langchain的txt文本向量库搭建与检索

这里的源码主要来自于Langchain-ChatGLM中的向量库部分,做了一些代码上的修改和封装,以适用于基于问题包含数据库表描述的txt文件(文件名为库表名,文件内容为库表中的字段及描述)对数据库表进行快速检索。

中文分词类

splitter.py

from langchain.text_splitter import CharacterTextSplitter
import re
from typing import Listclass ChineseTextSplitter(CharacterTextSplitter):def __init__(self, pdf: bool = False, sentence_size: int = 100, **kwargs):super().__init__(**kwargs)self.pdf = pdfself.sentence_size = sentence_sizedef split_text1(self, text: str) -> List[str]:if self.pdf:text = re.sub(r"\n{3,}", "\n", text)text = re.sub('\s', ' ', text)text = text.replace("\n\n", "")sent_sep_pattern = re.compile('([﹒﹔﹖﹗。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))')  # del :;sent_list = []for ele in sent_sep_pattern.split(text):if sent_sep_pattern.match(ele) and sent_list:sent_list[-1] += eleelif ele:sent_list.append(ele)return sent_listdef split_text(self, text: str) -> List[str]:   ##此处需要进一步优化逻辑if self.pdf:text = re.sub(r"\n{3,}", r"\n", text)text = re.sub('\s', " ", text)text = re.sub("\n\n", "", text)text = re.sub(r'([;;!?。!?\?])([^”’])', r"\1\n\2", text)  # 单字符断句符text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text)  # 英文省略号text = re.sub(r'(\…{2})([^"’”」』])', r"\1\n\2", text)  # 中文省略号text = re.sub(r'([;;!?。!?\?]["’”」』]{0,2})([^;;!?,。!?\?])', r'\1\n\2', text)# 如果双引号前有终止符,那么双引号才是句子的终点,把分句符\n放到双引号后,注意前面的几句都小心保留了双引号text = text.rstrip()  # 段尾如果有多余的\n就去掉它# 很多规则中会考虑分号;,但是这里我把它忽略不计,破折号、英文双引号等同样忽略,需要的再做些简单调整即可。ls = [i for i in text.split("\n") if i]for ele in ls:if len(ele) > self.sentence_size:ele1 = re.sub(r'([,,]["’”」』]{0,2})([^,,])', r'\1\n\2', ele)ele1_ls = ele1.split("\n")for ele_ele1 in ele1_ls:if len(ele_ele1) > self.sentence_size:ele_ele2 = re.sub(r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r'\1\n\2', ele_ele1)ele2_ls = ele_ele2.split("\n")for ele_ele2 in ele2_ls:if len(ele_ele2) > self.sentence_size:ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2)ele2_id = ele2_ls.index(ele_ele2)ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[ele2_id + 1:]ele_id = ele1_ls.index(ele_ele1)ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]id = ls.index(ele)ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1:]return ls

faiss向量库类

myfaiss.py

from langchain.vectorstores import FAISS
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.faiss import dependable_faiss_import
from typing import Any, Callable, List, Dict
from langchain.docstore.base import Docstore
from langchain.docstore.document import Document
import numpy as np
import copy
import osclass MyFAISS(FAISS, VectorStore):def __init__(self,embedding_function: Callable,index: Any,docstore: Docstore,index_to_docstore_id: Dict[int, str],normalize_L2: bool = False,):super().__init__(embedding_function=embedding_function,index=index,docstore=docstore,index_to_docstore_id=index_to_docstore_id,normalize_L2=normalize_L2)def seperate_list(self, ls: List[int]) -> List[List[int]]:lists = []ls1 = [ls[0]]source1 = self.index_to_docstore_source(ls[0])for i in range(1, len(ls)):if ls[i - 1] + 1 == ls[i] and self.index_to_docstore_source(ls[i]) == source1:ls1.append(ls[i])else:lists.append(ls1)ls1 = [ls[i]]source1 = self.index_to_docstore_source(ls[i])lists.append(ls1)return listsdef similarity_search_with_score_by_vector(self, embedding: List[float], k: int = 4) -> List[Document]:faiss = dependable_faiss_import()# (1,1024)vector = np.array([embedding], dtype=np.float32)# 默认FALSEif self._normalize_L2:faiss.normalize_L2(vector)# shape均为(1, k)scores, indices = self.index.search(vector, k)docs = []id_set = set()# 存储关键句keysentences = []# 遍历找到的k个最近相关文档的索引# top-k是第一次的筛选条件,score是第二次的筛选条件for j, i in enumerate(indices[0]):if i in self.index_to_docstore_id:_id = self.index_to_docstore_id[i]# 执行接下来的操作else:continue# index→id→contentdoc = self.docstore.search(_id)doc.metadata["score"] = int(scores[0][j])docs.append(doc)# 其实存的都是indexid_set.add(i)docs.sort(key=lambda doc: doc.metadata['score'])return docs

嵌入检索类

embedder.py

from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.document_loaders import TextLoader
from embeddings.splitter import ChineseTextSplitter
from embeddings.myfaiss import MyFAISS
import os
import torch
from config import *def torch_gc():if torch.cuda.is_available():# with torch.cuda.device(DEVICE):torch.cuda.empty_cache()torch.cuda.ipc_collect()elif torch.backends.mps.is_available():try:from torch.mps import empty_cacheempty_cache()except Exception as e:print(e)print("如果您使用的是 macOS 建议将 pytorch 版本升级至 2.0.0 或更高版本,以支持及时清理 torch 产生的内存占用。")class Embedder:def __init__(self, config):self.model = HuggingFaceEmbeddings(model_name="/home/df1500/NLP/LLM/pretrained_model/WordEmbeddings/"+config.emb_model,model_kwargs={'device': 'cuda'})self.config = configself.create_vector_score()self.vector_store = MyFAISS.load_local(self.config.db_vs_path, self.model)def load_file(self, filepath):# 对文件分词if filepath.lower().endswith(".txt"):loader = TextLoader(filepath, autodetect_encoding=True)textsplitter = ChineseTextSplitter(pdf=False, sentence_size=self.config.sentence_size)docs = loader.load_and_split(textsplitter)else:raise Exception("{}文件不是txt格式".format(filepath))return docsdef txt2vector_store(self, filepaths):# 批量建立知识库docs = []for filepath in filepaths:try:docs += self.load_file(filepath)except Exception as e:raise Exception("{}文件加载失败".format(filepath))print("文件加载完毕,正在生成向量库")vector_store = MyFAISS.from_documents(docs, self.model)torch_gc()vector_store.save_local(self.config.db_vs_path)def create_vector_score(self):if "index.faiss" not in os.listdir(self.config.db_vs_path):filepaths = os.listdir(self.config.db_doc_path)filepaths = [os.path.join(self.config.db_doc_path, filepath) for filepath in filepaths]self.txt2vector_store(filepaths)print("向量库已建立成功")def get_topk_db(self, query):related_dbs_with_score = self.vector_store.similarity_search_with_score(query, k=self.config.sim_k)topk_db = [{'匹配句': db_data.page_content, '数据库': os.path.basename(db_data.metadata['source'])[:-4], '得分': db_data.metadata['score']} for db_data in related_dbs_with_score]return topk_db

测试代码

Config是用来传参的类,这里略去定义

if __name__ == '__main__':Conf = Config()configs = Conf.get_config()embedder = Embedder(configs)query = "公司哪个月的出勤率是最高的?"topk_db = embedder.get_topk_db(query)print(topk_db)

相关文章:

基于Langchain的txt文本向量库搭建与检索

这里的源码主要来自于Langchain-ChatGLM中的向量库部分,做了一些代码上的修改和封装,以适用于基于问题和包含数据库表描述的txt文件(文件名为库表名,文件内容为库表中的字段及描述)对数据库表进行快速检索。 中文分词…...

vue2-router

1.基础 1.1.安装 npm install vue-router3.6.5 1.2.引入 import VueRouter from "vue-router" 1.3.注册 Vue.use(VueRouter) 1.4.创建 const router new VueRouter({routes: [{path:/page1, page1},{path:/page2, page2}]} ) 1.5.引用 new Vue({render: h >…...

css新闻链接案例

利用html和css构建出新闻链接案例,使用渐变色做出背景色变化 background: linear-gradient(to bottom, rgb(137, 210, 251), rgb(238, 248, 254), white); 利用背景图片,调整位置完成 dd { height: 28px; line-height: 28px; background-image: url(./图…...

Android wifi连接和获取IP分析

wifi 连接&获取IP 流程图 代码流程分析 一、关联阶段 1. WifiSettings.submit – > WifiManager WifiSettings 干的事情比较简单,当在dialog完成ssid 以及密码填充后,直接call WifiManager save 即可WifiManager 收到Save 之后,就开…...

MLIR笔记(5)

4.3.4. 图区域 在MLIR中,区域里类似图的语义由RegionKind::Graph来表示。对没有控制流的并发语义,以及通用有向图数据结构的建模,图区域是合适的。图区域适用于表示耦合值之间的循环关系,这些关系没有基本的序。例如,…...

abapgit 安装及使用

abapgit 需求 SA[ BASIS 版本 702 及以上 版本查看路径如下: 安装步骤如下: 1. 下载abapgit 独立版本 程序 链接如下:raw.githubusercontent.com/abapGit/build/main/zabapgit_standalone.prog.abap 2.安装开发版本 2.1 在线安装 前置条…...

园区无线覆盖方案(智慧园区综合解决方案)

​ 李经理正苦恼头疼的工业园区数字化改造项目。近年企业快速增长,园区内Argent工业设备激增,IT部门应接不暇。为确保生产系统稳定运行,IT管理团队经过反复摸索,决定进行全面的数字化升级。然而改造之艰巨远超想象——混杂的接入环境、复杂的专线部署、长达数月的建设周期,种种…...

配置中心--Spring Cloud Config

目录 概述 环境说明 步骤 创建远端git仓库 准备配置文件 配置中心--服务端 配置中心--客户端 配置中心的高可用 配置中心--服务端 配置中心--客户端 消息总线刷新配置 配置中心--服务端 配置中心--客户端 概述 因为微服务架构有很多个服务,手动一个一…...

笔记-模拟角频率和数字角频率的关系理解

先建议阅读前人此文(点击这里),有助于理解。 模拟频率:f 模拟角频率:Ω 数字角频率:ω 其中:在模拟信号中Ω 2πf 正弦波表示:sin(2πft) sin(Ωt) 数字信号就是离散的&#xff…...

Zookeeper+Kafka集群

注:本章使用的Kafka为2.7.0版本 Zookeeper概述 1.Zookeeper定义 Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。 2.Zookeeper工作机制 Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理…...

Sunshine+Moonlight+Android手机串流配置(局域网、无手柄)

目录 前言Sunshine(服务端)ApplicationConfigurationGeneralAdvance Moonlight(客户端)配对打开虚拟手柄串流按键调整退出串流 原神,启动! 前言 写这篇文章单纯是因为搜来搜去没有很符合我需求的教程&#…...

从顺序表中删除具有最小值的元素(假设唯一) 并由函数返回被删元素的值。空出的位 置由最后一个元素填补,若顺序表为空,则显示出错信息并退出运行。

题目描述:从顺序表中删除具有最小值的元素(假设唯一) 并由函数返回被删元素的值。空出的位置由最后一个元素填补,若顺序表为空,则显示出错信息并退出运行。 bool DeleteMin(SqList &L,int &min){if(L.length 0)return false;min L…...

详解—[C++ 数据结构]—AVL树

目录 一.AVL树的概念 二、AVL树节点的定义 三、AVL树的插入 3.1插入方法 四、AVL树的旋转 1. 新节点插入较高左子树的左侧---左左:右单旋 2. 新节点插入较高右子树的右侧---右右:左单旋 3.新节点插入较高左子树的右侧---左右:先左单旋…...

卷积神经网络(CNN):乳腺癌识别.ipynb

文章目录 一、前言一、设置GPU二、导入数据1. 导入数据2. 检查数据3. 配置数据集4. 数据可视化 三、构建模型四、编译五、训练模型六、评估模型1. Accuracy与Loss图2. 混淆矩阵3. 各项指标评估 一、前言 我的环境: 语言环境:Python3.6.5编译器&#xf…...

有文件实体的后门无文件实体的后门rootkit后门

有文件实体后门和无文件实体后门&RootKit后门 什么是有文件的实体后门: 在传统的webshell当中,后门代码都是可以精确定位到某一个文件上去的,你可以rm删除它,可以鼠标右键操作它,它是有一个文件实体对象存在的。…...

GPT实战系列-大模型训练和预测,如何加速、降低显存

GPT实战系列-大模型训练和预测,如何加速、降低显存 不做特别处理,深度学习默认参数精度为浮点32位精度(FP32)。大模型参数庞大,10-1000B级别,如果不注意优化,既耗费大量的显卡资源,…...

SQL Sever 基础知识 - 数据排序

SQL Sever 基础知识 - 二 、数据排序 二 、对数据进行排序第1节 ORDER BY 子句简介第2节 ORDER BY 子句示例2.1 按一列升序对结果集进行排序2.2 按一列降序对结果集进行排序2.3 按多列对结果集排序2.4 按多列对结果集不同排序2.5 按不在选择列表中的列对结果集进行排序2.6 按表…...

vscode配置使用 cpplint

标题安装clang-format和cpplint sudo apt-get install clang-format sudo pip3 install cpplint标题以下settings.json文件放置xxx/Code/User目录 settings.json {"sync.forceDownload": false,"workbench.sideBar.location": "right","…...

C++ 系列 第四篇 C++ 数据类型上篇—基本类型

系列文章 C 系列 前篇 为什么学习C 及学习计划-CSDN博客 C 系列 第一篇 开发环境搭建(WSL 方向)-CSDN博客 C 系列 第二篇 你真的了解C吗?本篇带你走进C的世界-CSDN博客 C 系列 第三篇 C程序的基本结构-CSDN博客 前言 面向对象编程(OOP)的…...

C++ 指针详解

目录 一、指针概述 指针的定义 指针的大小 指针的解引用 野指针 指针未初始化 指针越界访问 指针运算 二级指针 指针与数组 二、字符指针 三、指针数组 四、数组指针 函数指针 函数指针数组 指向函数指针数组的指针 回调函数 指针与数组 一维数组 字符数组…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要

根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分&#xff1a; 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...