当前位置: 首页 > news >正文

网站设计服务/免费个人网站源码

网站设计服务,免费个人网站源码,网页游戏网站下载,做一静态网站 多少钱Diffusion:通过扩散和逆扩散过程生成图像的生成式模型 中已经对 diffusion 的原理进行了直观地梳理,本文对其中的数学推导进行讲解,还是基于 DDPM。 目录 一. 预备知识1. 重参数技巧2. 高斯分布的可加性3. 扩散递推式的由来 二. 扩散过程1. 背…

Diffusion:通过扩散和逆扩散过程生成图像的生成式模型 中已经对 diffusion 的原理进行了直观地梳理,本文对其中的数学推导进行讲解,还是基于 DDPM。

目录

  • 一. 预备知识
    • 1. 重参数技巧
    • 2. 高斯分布的可加性
    • 3. 扩散递推式的由来
  • 二. 扩散过程
    • 1. 背景声明
    • 2. 公式推导
  • 三. 逆扩散过程
    • 1. 背景声明
    • 2. 公式推导
  • 四. 训练过程

一. 预备知识

1. 重参数技巧

重参数技巧 (Reparametrization Trick) 是一种在深度学习中用于训练概率模型的技术,通常用于变分推断和概率生成模型,如变分自动编码器 (Variational Autoencoders, VAE)。这些模型的部分参数是使用特定概率分布随机采样得到的而不是确定性的值,在梯度下降反向优化时难以计算。

因此引入了重参数技巧,通过重新引入可微变换来参数化随机变量,将采样操作转换为模型参数和一个固定的噪声项的函数,使得梯度计算变得可行。举个例子 1,如果要从高斯分布 z ∼ N ( z ; μ θ , σ θ 2 I ) z \sim \mathcal{N}\left(z ; \mu_\theta, \sigma_\theta^2 \mathbf{I}\right) zN(z;μθ,σθ2I) 中采样一个 z z z,可以写成:
z = μ θ + σ θ ⊙ ϵ , ϵ ∼ N ( 0 , I ) z=\mu_\theta+\sigma_\theta \odot \epsilon, \epsilon \sim \mathcal{N}(0, \mathbf{I}) z=μθ+σθϵ,ϵN(0,I)

其中, μ θ \mu_\theta μθ 表示分布的均值, σ θ \sigma_\theta σθ 表示分布的标准差, ⊙ \odot 表示对矩阵的逐元素相乘, ϵ \epsilon ϵ 是从标准高斯分布中采样的噪声项。这样,我们可以对 μ θ \mu_\theta μθ σ θ \sigma_\theta σθ 进行梯度计算,而不需要对采样操作进行梯度计算。

重参数技巧的使用可以使得概率模型的训练更加高效和稳定。

2. 高斯分布的可加性

两个互相独立的高斯分布之和仍为高斯分布,即:
X 1 ∼ N ( μ 1 , σ 1 2 ) X 2 ∼ N ( μ 2 , σ 2 2 ) X_1 \sim N(\mu_1, \sigma_1^2)\\X_2 \sim N(\mu_2, \sigma_2^2) X1N(μ1,σ12)X2N(μ2,σ22)

则:
X 1 + X 2 ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) X 1 − X 2 ∼ N ( μ 1 − μ 2 , σ 1 2 + σ 2 2 ) X_1+X_2 \sim N(\mu_1+\mu_2, \sigma_1^2+\sigma_2^2)\\X_1-X_2 \sim N(\mu_1-\mu_2, \sigma_1^2+\sigma_2^2) X1+X2N(μ1+μ2,σ12+σ22)X1X2N(μ1μ2,σ12+σ22)

两个高斯分布的和本质上就是二维连续型随机变量函数的分布,可以通过计算其概率密度函数证明,见 证明两个互相独立的高斯分布之和仍为高斯分布。

3. 扩散递推式的由来

不知道有多少读者和我一样,阅读 DDPM 时对扩散的递推式 q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) q(x_t \mid x_{t-1})=\mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \bold I) q(xtxt1)=N(xt;1βt xt1,βtI) 感到疑惑,文中也没有解释这是怎么来的,网上的很多公式讲解也都是直接引用了该式进行推导。本节参考 一文解释 Diffusion Model (一) DDPM 理论推导,对扩散过程的递推式的由来进行梳理。2

基于 diffusion 的原理,扩散过程是一个不断加噪的过程,因此相邻图像应该满足线性关系,且图像信息应当被不断减弱,形如:
x t = a t x t − 1 + b t ε t , ε t ∼ N ( 0 , I ) \boldsymbol{x}_t=a_t \boldsymbol{x}_{t-1}+b_t \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ xt=atxt1+btεt,εtN(0,I)

因为 x t \boldsymbol{x}_t xt 中包含的图像信息相较 x t − 1 \boldsymbol{x}_{t-1} xt1 更少,因此衰减系数 0 < a t < 1 0<a_t<1 0<at<1。同样,噪声系数 0 < b t < 1 0<b_t<1 0<bt<1

x t − 1 \boldsymbol{x}_{t-1} xt1 代入 x t \boldsymbol{x}_t xt 可以得到:
x t = a t x t − 1 + b t ε t = a t ( a t − 1 x t − 2 + b t − 1 ε t − 1 ) + b t ε t = a t a t − 1 x t − 2 + a t b t − 1 ε t − 1 + b t ε t = … = ( a t … a 1 ) x 0 + ( a t … a 2 ) b 1 ε 1 + ( a t … a 3 ) b 2 ε 2 + ⋯ + a t b t − 1 ε t − 1 + b t ε t \begin{aligned} \boldsymbol{x}_t & =a_t \boldsymbol{x}_{t-1}+b_t \boldsymbol{\varepsilon}_t \\ & =a_t\left(a_{t-1} \boldsymbol{x}_{t-2}+b_{t-1} \varepsilon_{t-1}\right)+b_t \varepsilon_t \\ & =a_t a_{t-1} \boldsymbol{x}_{t-2}+a_t b_{t-1} \boldsymbol{\varepsilon}_{t-1}+b_t \boldsymbol{\varepsilon}_t \\ & =\ldots \\ & =\left(a_t \ldots a_1\right) \boldsymbol{x}_0+\left(a_t \ldots a_2\right) b_1 \varepsilon_1+\left(a_t \ldots a_3\right) b_2 \varepsilon_2+\cdots+a_t b_{t-1} \varepsilon_{t-1}+b_t \varepsilon_t \\ \end{aligned} xt=atxt1+btεt=at(at1xt2+bt1εt1)+btεt=atat1xt2+atbt1εt1+btεt==(ata1)x0+(ata2)b1ε1+(ata3)b2ε2++atbt1εt1+btεt

x t \boldsymbol{x}_t xt 的第一项关于原始图像 x 0 \boldsymbol{x}_0 x0,其余余项可以利用高斯分布的可加性进行整合,满足高斯分布 N ( 0 , ( ( a t … a 2 ) 2 b 1 2 + ( a t … a 3 ) 2 b 2 2 + ⋯ + a t 2 b t − 1 2 + b t 2 ) I ) \mathcal{N}(\mathbf{0}, (\left(a_t \ldots a_2\right)^2 b_1^2+\left(a_t \ldots a_3\right)^2 b_2^2+\cdots+a_t^2 b_{t-1}^2+b_t^2)\mathbf{I}) N(0,((ata2)2b12+(ata3)2b22++at2bt12+bt2)I)。于是可以将 x t \boldsymbol{x}_t xt 写成:
x t = ( a t … a 1 ) x 0 + ( a t … a 2 ) b 1 ε 1 + ( a t … a 3 ) b 2 ε 2 + ⋯ + a t b t − 1 ε t − 1 + b t ε t = ( a t … a 1 ) x 0 + ( a t … a 2 ) 2 b 1 2 + ( a t … a 3 ) 2 b 2 2 + ⋯ + a t 2 b t − 1 2 + b t 2 ε ‾ t , \begin{aligned} \boldsymbol{x}_t & =\left(a_t \ldots a_1\right) \boldsymbol{x}_0+\left(a_t \ldots a_2\right) b_1 \varepsilon_1+\left(a_t \ldots a_3\right) b_2 \varepsilon_2+\cdots+a_t b_{t-1} \varepsilon_{t-1}+b_t \varepsilon_t \\ & =\left(a_t \ldots a_1\right) \boldsymbol{x}_0+\sqrt{\left(a_t \ldots a_2\right)^2 b_1^2+\left(a_t \ldots a_3\right)^2 b_2^2+\cdots+a_t^2 b_{t-1}^2+b_t^2} \overline{\boldsymbol{\varepsilon}}_t, \\ \end{aligned} xt=(ata1)x0+(ata2)b1ε1+(ata3)b2ε2++atbt1εt1+btεt=(ata1)x0+(ata2)2b12+(ata3)2b22++at2bt12+bt2 εt,

其中 ε ‾ t ∼ N ( 0 , I ) \overline{\varepsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) εtN(0,I),服从标准高斯分布。

接下来再看 ε ‾ t \overline{\varepsilon}_t εt 前面的系数,为了一般性表示,在前面添加 ( a t … a 1 ) 2 \left(a_t \ldots a_1\right)^2 (ata1)2 项,最后再减去即可:
( a t … a 1 ) 2 + ( a t … a 2 ) 2 b 1 2 + ( a t … a 3 ) 2 b 2 2 + ⋯ + a t 2 b t − 1 2 + b t 2 − ( a t … a 1 ) 2 = ( a t … a 2 ) 2 a 1 2 + ( a t … a 2 ) 2 b 1 2 + ( a t … a 3 ) 2 b 2 2 + ⋯ + a t 2 b t − 1 2 + b t 2 − ( a t … a 1 ) 2 = ( a t … a 2 ) 2 ( a 1 2 + b 1 2 ) + ( a t … a 3 ) 2 b 2 2 + ⋯ + a t 2 b t − 1 2 + b t 2 − ( a t … a 1 ) 2 = ( a t … a 3 ) 2 ( a 2 2 ( a 1 2 + b 1 2 ) + b 2 2 ) + ⋯ + a t 2 b t − 1 2 + b t 2 − ( a t … a 1 ) 2 = a t 2 ( a t − 1 2 ( … ( a 2 2 ( a 1 2 + b 1 2 ) + b 2 2 ) + … ) + b t − 1 2 ) + b t 2 − ( a t … a 1 ) 2 \begin{aligned} & \left(a_t \ldots a_1\right)^2+\left(a_t \ldots a_2\right)^2 b_1^2+\left(a_t \ldots a_3\right)^2 b_2^2+\cdots+a_t^2 b_{t-1}^2+b_t^2 - \left(a_t \ldots a_1\right)^2\\ =& \left(a_t \ldots a_2\right)^2 a_1^2+\left(a_t \ldots a_2\right)^2 b_1^2+\left(a_t \ldots a_3\right)^2 b_2^2+\cdots+a_t^2 b_{t-1}^2+b_t^2 - \left(a_t \ldots a_1\right)^2\\ =& \left(a_t \ldots a_2\right)^2\left(a_1^2+b_1^2\right)+\left(a_t \ldots a_3\right)^2 b_2^2+\cdots+a_t^2 b_{t-1}^2+b_t^2 - \left(a_t \ldots a_1\right)^2\\ =& \left(a_t \ldots a_3\right)^2\left(a_2^2\left(a_1^2+b_1^2\right)+b_2^2\right)+\cdots+a_t^2 b_{t-1}^2+b_t^2 - \left(a_t \ldots a_1\right)^2\\ =& a_t^2\left(a_{t-1}^2\left(\ldots\left(a_2^2\left(a_1^2+b_1^2\right)+b_2^2\right)+\ldots\right)+b_{t-1}^2\right)+b_t^2 - \left(a_t \ldots a_1\right)^2\\ \end{aligned} ====(ata1)2+(ata2)2b12+(ata3)2b22++at2bt12+bt2(ata1)2(ata2)2a12+(ata2)2b12+(ata3)2b22++at2bt12+bt2(ata1)2(ata2)2(a12+b12)+(ata3)2b22++at2bt12+bt2(ata1)2(ata3)2(a22(a12+b12)+b22)++at2bt12+bt2(ata1)2at2(at12((a22(a12+b12)+b22)+)+bt12)+bt2(ata1)2

为了表示的简洁以及便于书写,加一个限制条件: a i 2 + b i 2 = 1 a_i^2+b_i^2=1 ai2+bi2=1,就可以将 x t \boldsymbol{x}_t xt 大大简化:
x t = ( a t … a 1 ) x 0 + ( a t … a 2 ) 2 b 1 2 + ( a t … a 3 ) 2 b 2 2 + ⋯ + a t 2 b t − 1 2 + b t 2 ε ‾ t , = ( a t … a 1 ) x 0 + 1 − ( a t … a 1 ) 2 ε ‾ t \begin{aligned} \boldsymbol{x}_t & =\left(a_t \ldots a_1\right) \boldsymbol{x}_0+\sqrt{\left(a_t \ldots a_2\right)^2 b_1^2+\left(a_t \ldots a_3\right)^2 b_2^2+\cdots+a_t^2 b_{t-1}^2+b_t^2} \overline{\boldsymbol{\varepsilon}}_t, \\ & = \left(a_t \ldots a_1\right) \boldsymbol{x}_0 + \sqrt{1-\left(a_t \ldots a_1\right)^2} \overline{\boldsymbol{\varepsilon}}_t \end{aligned} xt=(ata1)x0+(ata2)2b12+(ata3)2b22++at2bt12+bt2 εt,=(ata1)x0+1(ata1)2 εt

α ‾ t = ( a t … a 1 ) 2 \overline{\alpha}_t = \left(a_t \ldots a_1\right)^2 αt=(ata1)2,则有:
x t = α ‾ t x 0 + 1 − α ‾ t ε ‾ t , ε ‾ t ∼ N ( 0 , I ) \boldsymbol{x}_t=\sqrt{\overline{\alpha}_t} \boldsymbol{x}_0+\sqrt{1-\overline{\alpha}_t} \overline{\varepsilon}_t, \quad \overline{\varepsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) xt=αt x0+1αt εt,εtN(0,I)

上式和(7)式相同。

二. 扩散过程

1. 背景声明

  • 记原始图像为 x 0 x_0 x0,扩散过程累计 T T T 次对其添加高斯噪声,得到 x 1 , x 2 , … , x T x_1, x_2, \dots, x_T x1,x2,,xT

  • x t ∼ q ( x t ) x_t \sim q(x_t) xtq(xt),表示其服从的概率分布而不是一个具体的特定值;

  • 根据 diffusion 模型的原理, x T ∼ N ( 0 , I ) x_T \sim \mathcal{N}(0, \bold I) xTN(0,I),其中 I \bold I I 为单位矩阵;

  • 扩散过程添加的噪声都满足均值为 0 的高斯分布,方差是超参数,用来调整扩散效果。引入方差系数为 β 1 , β 2 , … , β T , β t ∈ ( 0 , 1 ) \beta_1, \beta_2, \dots, \beta_T, \beta_t \in (0,1) β1,β2,,βT,βt(0,1),具体实现是从 0.0001 到 0.02 线性插值。文中定义扩散过程如下:
    q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) (1) q(x_t \mid x_{t-1})=\mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \bold I) \tag{1} q(xtxt1)=N(xt;1βt xt1,βtI)(1)

  • 因为扩散过程是马尔科夫过程,因此有:
    q ( x 1 : T ∣ x 0 ) = ∏ t = 1 T q ( x t ∣ x t − 1 ) (2) q(x_{1:T} \mid x_{0})=\prod_{t=1}^T q(x_t \mid x_{t-1}) \tag{2} q(x1:Tx0)=t=1Tq(xtxt1)(2)

    直观来讲, x t x_t xt x t − 1 x_{t-1} xt1 的基础上乘上系数 1 − β t \sqrt{1-\beta_t} 1βt ,相当于一个变淡的过程;再加上扰动 β t ϵ t − 1 \beta_t \epsilon_{t-1} βtϵt1,就能够让图像向标准高斯分布靠近。

  • 为了表示方便,记 α t = 1 − β t \alpha_t = 1- \beta_t αt=1βt α ‾ t = ∏ i = 1 t α i \overline{\alpha}_t = \prod_{i=1}^t \alpha_i αt=i=1tαi

2. 公式推导

将(1)式使用重参化技巧表示:
x t = 1 − β t x t − 1 + β t ϵ t − 1 其中  ϵ t − 1 ∼ N ( 0 , I ) (3) x_t = \sqrt{1-\beta_t}x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1} \quad \text{ 其中 }\epsilon_{t-1} \sim \mathcal{N}(0, \bold I) \tag{3} xt=1βt xt1+βt ϵt1 其中 ϵt1N(0,I)(3)

x t − 1 x_{t-1} xt1 代入 x t x_{t} xt 得到:
∵ x t = 1 − β t x t − 1 + β t ϵ t − 1 x t − 1 = 1 − β t − 1 x t − 2 + β t − 1 ϵ t − 2 ∴ x t = 1 − β t ( 1 − β t − 1 x t − 2 + β t − 1 ϵ t − 2 ) + β t ϵ t − 1 = ( 1 − β t ) ( 1 − β t − 1 ) x t − 2 + ( 1 − β t ) β t − 1 ϵ t − 2 + β t ϵ t − 1 = α t α t − 1 x t − 2 + α t ( 1 − α t − 1 ) ϵ t − 2 + 1 − α t ϵ t − 1 (4) \because \quad x_t = \sqrt{1-\beta_t}x_{t-1} + \sqrt{\beta_t} \epsilon_{t-1}\\ \quad\quad x_{t-1} = \sqrt{1-\beta_{t-1}}x_{t-2} + \sqrt{\beta_{t-1}} \epsilon_{t-2}\\ \begin{aligned} \therefore \quad x_t & = \sqrt{1-\beta_t}(\sqrt{1-\beta_{t-1}}x_{t-2} + \sqrt{\beta_{t-1}} \epsilon_{t-2}) + \sqrt{\beta_t} \epsilon_{t-1}\\ & = \sqrt{(1-\beta_t)(1-\beta_{t-1})} x_{t-2} + \sqrt{(1-\beta_t)\beta_{t-1}} \epsilon_{t-2} + \sqrt{\beta_t} \epsilon_{t-1}\\ & = \sqrt{\alpha_t\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_t(1-\alpha_{t-1})} \epsilon_{t-2} + \sqrt{1-\alpha_{t}} \epsilon_{t-1} \tag{4} \end{aligned} xt=1βt xt1+βt ϵt1xt1=1βt1 xt2+βt1 ϵt2xt=1βt (1βt1 xt2+βt1 ϵt2)+βt ϵt1=(1βt)(1βt1) xt2+(1βt)βt1 ϵt2+βt ϵt1=αtαt1 xt2+αt(1αt1) ϵt2+1αt ϵt1(4)

如果 ϵ t \epsilon_{t} ϵt 是特定值,后面的余项就不能继续处理。但 ϵ t \epsilon_{t} ϵt 是重参化过程中引入的标准高斯分布中采样,结合高斯分布的可加性,有:
∵ α t ( 1 − α t − 1 ) ϵ t − 2 ∼ N ( 0 , α t ( 1 − α t − 1 ) I ) 1 − α t ϵ t − 1 ∼ N ( 0 , ( 1 − α t ) I ) ∴ α t ( 1 − α t − 1 ) ϵ t − 2 + 1 − α t ϵ t − 1 ∼ N ( 0 , ( 1 − α t α t − 1 ) I ) \because \quad \sqrt{\alpha_t(1-\alpha_{t-1})} \epsilon_{t-2} \sim \mathcal{N}(0, \alpha_t(1-\alpha_{t-1})\bold I)\\ \sqrt{1-\alpha_{t}} \epsilon_{t-1} \sim \mathcal{N}(0, (1-\alpha_{t}) \bold I)\\ \therefore \quad \sqrt{\alpha_t(1-\alpha_{t-1})} \epsilon_{t-2} + \sqrt{1-\alpha_{t}} \epsilon_{t-1} \sim \mathcal{N}(0, (1-\alpha_t\alpha_{t-1})\bold I) αt(1αt1) ϵt2N(0,αt(1αt1)I)1αt ϵt1N(0,(1αt)I)αt(1αt1) ϵt2+1αt ϵt1N(0,(1αtαt1)I)

因此可以将余项合并,改写成:
α t ( 1 − α t − 1 ) ϵ t − 2 + 1 − α t ϵ t − 1 = 1 − α t α t − 1 ϵ ‾ t − 2 (5) \sqrt{\alpha_t(1-\alpha_{t-1})} \epsilon_{t-2} + \sqrt{1-\alpha_{t}} \epsilon_{t-1} = \sqrt{1-\alpha_t\alpha_{t-1}} \overline \epsilon_{t-2} \tag{5} αt(1αt1) ϵt2+1αt ϵt1=1αtαt1 ϵt2(5)

其中 ϵ ‾ t − 2 ∼ N ( 0 , I ) \overline \epsilon_{t-2} \sim \mathcal{N}(0, \bold I) ϵt2N(0,I),作为余项的统一表示。代入(4)式,得到:
x t = α t α t − 1 x t − 2 + α t ( 1 − α t − 1 ) ϵ t − 2 + 1 − α t ϵ t − 1 = α t α t − 1 x t − 2 + 1 − α t α t − 1 ϵ ‾ t − 2 (6) \begin{aligned} x_t & = \sqrt{\alpha_t\alpha_{t-1}} x_{t-2} + \sqrt{\alpha_t(1-\alpha_{t-1})} \epsilon_{t-2} + \sqrt{1-\alpha_{t}} \epsilon_{t-1}\\ & = \sqrt{\alpha_t\alpha_{t-1}} x_{t-2} + \sqrt{1-\alpha_t\alpha_{t-1}} \overline \epsilon_{t-2} \end{aligned} \tag{6} xt=αtαt1 xt2+αt(1αt1) ϵt2+1αt ϵt1=αtαt1 xt2+1αtαt1 ϵt2(6)

同理继续向下推导,可以得到 x t x_t xt 的通项:
x t = α t x t − 1 + 1 − α t ϵ ‾ t − 1 = α t α t − 1 x t − 2 + 1 − α t α t − 1 ϵ ‾ t − 2 = ⋯ = α t α t − 1 ⋯ α 1 x 0 + 1 − α t α t − 1 ⋯ α 1 ϵ ‾ 0 = α ‾ t x 0 + 1 − α ‾ t ϵ ‾ 0 (7) \begin{aligned} x_t & = \sqrt{\alpha_t} x_{t-1} + \sqrt{1-\alpha_t} \overline \epsilon_{t-1}\\ & = \sqrt{\alpha_t\alpha_{t-1}} x_{t-2} + \sqrt{1-\alpha_t\alpha_{t-1}} \overline \epsilon_{t-2}\\ & = \cdots \\ & = \sqrt{\alpha_t\alpha_{t-1}\cdots\alpha_1} x_{0} + \sqrt{1-\alpha_t\alpha_{t-1}\cdots\alpha_1} \overline \epsilon_{0}\\ & = \sqrt{\overline{\alpha}_t} x_{0} + \sqrt{1-\overline{\alpha}_t} \overline \epsilon_{0}\\ \end{aligned} \tag{7} xt=αt xt1+1αt ϵt1=αtαt1 xt2+1αtαt1 ϵt2==αtαt1α1 x0+1αtαt1α1 ϵ0=αt x0+1αt ϵ0(7)

由此可以看出,扩散过程通过马尔科夫性质可以一步到位,这也是 diffusion 正向扩散的核心。

三. 逆扩散过程

Diffusion:通过扩散和逆扩散过程生成图像的生成式模型 中已经说了:逆扩散 q ( x t − 1 ∣ x t ) q (x_{t-1} \mid x_t) q(xt1xt) 是未知的,需要用 U-Net 学习 p θ ( x t − 1 ∣ x t ) p_\theta (x_{t-1} \mid x_t) pθ(xt1xt) 来近似;学习过程中使用 q ( x t − 1 ∣ x 0 x t ) q (x_{t-1} \mid x_0x_t) q(xt1x0xt) 来指导 p θ ( x t − 1 ∣ x t ) p_\theta (x_{t-1} \mid x_t) pθ(xt1xt) 进行训练。

1. 背景声明

  • q ( x t − 1 ∣ x t ) q (x_{t-1} \mid x_t) q(xt1xt) 是不可知的,但 q ( x t − 1 ∣ x 0 , x t ) q (x_{t-1} \mid x_0, x_t) q(xt1x0,xt) 是可知的,记:
    q ( x t − 1 ∣ x t , x 0 ) = N ( x t − 1 ; μ ~ ( x t , x 0 ) , β ~ t I ) (8) q\left(x_{t-1} \mid x_t, x_0\right)=\mathcal{N}\left(x_{t-1} ; \tilde{\mu}\left(x_t, x_0\right), \tilde{\beta}_t \mathbf{I}\right) \tag{8} q(xt1xt,x0)=N(xt1;μ~(xt,x0),β~tI)(8)
  • 使用 q ( x t − 1 ∣ x 0 x t ) q (x_{t-1} \mid x_0x_t) q(xt1x0xt) 来指导 p θ ( x t − 1 ∣ x t ) p_\theta (x_{t-1} \mid x_t) pθ(xt1xt) 进行训练;
  • 根据马尔科夫性质,有:
    p θ ( x 0 : T ) = p ( x T ) ∏ t = 1 T p θ ( x t − 1 ∣ x t ) (9) p_\theta\left(x_{0: T}\right)=p\left(x_T\right) \prod_{t=1}^T p_\theta\left(x_{t-1} \mid x_t\right) \tag{9} pθ(x0:T)=p(xT)t=1Tpθ(xt1xt)(9)
  • 使用 U-Net 表示 p θ ( x t − 1 ∣ x t ) p_\theta (x_{t-1} \mid x_t) pθ(xt1xt)
    p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t ) , Σ θ ( x t , t ) ) (10) p_\theta\left(x_{t-1} \mid x_t\right)=\mathcal{N}\left(x_{t-1} ; \mu_\theta\left(x_t, t\right), \Sigma_\theta\left(x_t, t\right)\right) \tag{10} pθ(xt1xt)=N(xt1;μθ(xt,t),Σθ(xt,t))(10)

2. 公式推导

都说 q ( x t − 1 ∣ x 0 , x t ) q (x_{t-1} \mid x_0, x_t) q(xt1x0,xt) 是可知的,下面推导其表达式。根据贝叶斯公式,有:
q ( x t − 1 ∣ x t , x 0 ) = q ( x t ∣ x t − 1 , x 0 ) q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) (11) q\left(x_{t-1} \mid x_t, x_0\right)=q\left(x_t \mid x_{t-1}, x_0\right) \frac{q\left(x_{t-1} \mid x_0\right)}{q\left(x_t \mid x_0\right)} \tag{11} q(xt1xt,x0)=q(xtxt1,x0)q(xtx0)q(xt1x0)(11)

其中 q ( x t − 1 ∣ x t , x 0 ) q\left(x_{t-1} \mid x_t, x_0\right) q(xt1xt,x0) 为后验概率, q ( x t ∣ x t − 1 , x 0 ) q\left(x_t \mid x_{t-1}, x_0\right) q(xtxt1,x0) 为似然估计, q ( x t − 1 ∣ x 0 ) q\left(x_{t-1} \mid x_0\right) q(xt1x0) 为先验概率, q ( x t ∣ x 0 ) q\left(x_t \mid x_0\right) q(xtx0) 为证据(evidence)。这一步贝叶斯公式巧妙地将逆向过程全部变回了前向。 注意,这里的表示和普通的贝叶斯公式有所不同(多了 x 0 x_0 x0 项)是因为先验概率和证据无法直接求解,需要结合 x 0 x_0 x0 求解得到。

根据扩散过程推出的 x t x_t xt 的通项,即(7)式,有:
q ( x t − 1 ∣ x 0 ) = α ‾ t − 1 x 0 + 1 − α ‾ t − 1 ϵ ∼ N ( α ‾ t − 1 x 0 , 1 − α ‾ t − 1 ) q ( x t ∣ x 0 ) = α ‾ t x 0 + 1 − α ‾ t ϵ ∼ N ( α ‾ t x 0 , 1 − α ‾ t ) (12) \begin{aligned} q\left(x_{t-1} \mid x_0\right)&=\sqrt{\overline{\alpha}_{t-1}} x_0+\sqrt{1-\overline{\alpha}_{t-1}} \epsilon \sim \mathcal{N}\left(\sqrt{\overline{\alpha}_{t-1}} x_0, 1-\overline{\alpha}_{t-1}\right) \\ q\left(x_t \mid x_0\right)&=\sqrt{\overline{\alpha}_t} x_0+\sqrt{1-\overline{\alpha}_t} \epsilon \sim \mathcal{N}\left(\sqrt{\overline{\alpha}_t} x_0, 1-\overline{\alpha}_t\right) \\ \end{aligned} \tag{12} q(xt1x0)q(xtx0)=αt1 x0+1αt1 ϵN(αt1 x0,1αt1)=αt x0+1αt ϵN(αt x0,1αt)(12)

根据(3)式,有:
q ( x t ∣ x t − 1 , x 0 ) = q ( x t ∣ x t − 1 ) = α t x t − 1 + 1 − α t ϵ ∼ N ( α t x t − 1 , 1 − α t ) (13) q\left(x_t \mid x_{t-1}, x_0\right)=q\left(x_t \mid x_{t-1}\right)=\sqrt{\alpha_t} x_{t-1}+\sqrt{1-\alpha_t} \epsilon \sim \mathcal{N}\left(\sqrt{\alpha_t} x_{t-1}, 1-\alpha_t\right) \tag{13} q(xtxt1,x0)=q(xtxt1)=αt xt1+1αt ϵN(αt xt1,1αt)(13)

根据高斯分布定义式,有:
N ( μ , σ 2 ) ∝ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) (14) \mathcal{N}\left(\mu, \sigma^2\right) \propto \exp \left(-\frac{(x-\mu)^2}{2 \sigma^2}\right) \tag{14} N(μ,σ2)exp(2σ2(xμ)2)(14)

将(12)~(14)式代入(11),有:
q ( x t − 1 ∣ x t , x 0 ) = q ( x t ∣ x t − 1 , x 0 ) q ( x t − 1 ∣ x 0 ) q ( x t ∣ x 0 ) ∝ exp ⁡ ( − 1 2 ( ( x t − α t x t − 1 ) 2 β t + ( x t − 1 − α ‾ t − 1 x 0 ) 2 1 − a ‾ t − 1 − ( x t − α ‾ t x 0 ) 2 1 − a ‾ t ) ) (15) \begin{aligned} q\left(x_{t-1} \mid x_t, x_0\right)& =q\left(x_t \mid x_{t-1}, x_0\right) \frac{q\left(x_{t-1} \mid x_0\right)}{q\left(x_t \mid x_0\right)} \\ & \propto \exp \left(-\frac{1}{2}\left(\frac{\left(x_t-\sqrt{\alpha_t} x_{t-1}\right)^2}{\beta_t}+\frac{\left(x_{t-1}-\sqrt{\overline{\alpha}_{t-1}} x_0\right)^2}{1-\overline{a}_{t-1}}-\frac{\left(x_t-\sqrt{\overline{\alpha}_t} x_0\right)^2}{1-\overline{a}_t}\right)\right) \\ \end{aligned} \tag{15} q(xt1xt,x0)=q(xtxt1,x0)q(xtx0)q(xt1x0)exp(21(βt(xtαt xt1)2+1at1(xt1αt1 x0)21at(xtαt x0)2))(15)

因为 q ( x t − 1 ∣ x t , x 0 ) q\left(x_{t-1} \mid x_t, x_0\right) q(xt1xt,x0) 是关于 x t − 1 x_{t-1} xt1 的表达式,因此将(15)式中平方项展开,再按 x t − 1 x_{t-1} xt1 合并同类项,可得:
exp ⁡ ( − 1 2 ( ( x t − α t x t − 1 ) 2 β t + ( x t − 1 − α ‾ t − 1 x 0 ) 2 1 − a ‾ t − 1 − ( x t − α ‾ t x 0 ) 2 1 − a ‾ t ) ) = exp ⁡ ( − 1 2 ( ( α t β t + 1 1 − α ‾ t − 1 ) x t − 1 2 ⏟ x t − 1 方差  − ( 2 α t β t x t + 2 a ‾ t − 1 1 − α ‾ t − 1 x 0 ) x t − 1 ⏟ x t − 1 均值  + C ( x t , x 0 ) ⏟ 与  x t − 1 无关  ) ) (16) \begin{aligned} & \exp \left(-\frac{1}{2}\left(\frac{\left(x_t-\sqrt{\alpha_t} x_{t-1}\right)^2}{\beta_t}+\frac{\left(x_{t-1}-\sqrt{\overline{\alpha}_{t-1}} x_0\right)^2}{1-\overline{a}_{t-1}}-\frac{\left(x_t-\sqrt{\overline{\alpha}_t} x_0\right)^2}{1-\overline{a}_t}\right)\right) \\ = & \exp \left(-\frac{1}{2}\left(\underbrace{\left(\frac{\alpha_t}{\beta_t}+\frac{1}{1-\overline{\alpha}_{t-1}}\right) x_{t-1}^2}_{x_{t-1} \text { 方差 }} - \underbrace{\left(\frac{2 \sqrt{\alpha_t}}{\beta_t} x_t+\frac{2 \sqrt{\overline{a}_{t-1}}}{1-\overline{\alpha}_{t-1}} x_0 \right) x_{t-1}}_{x_{t-1} \text { 均值 }}+\underbrace{C\left(x_t, x_0\right)}_{\text {与 } x_{t-1} \text { 无关 }}\right)\right) \\ \end{aligned} \tag{16} =exp(21(βt(xtαt xt1)2+1at1(xt1αt1 x0)21at(xtαt x0)2))exp 21 xt1 方差  (βtαt+1αt11)xt12xt1 均值  (βt2αt xt+1αt12at1 x0)xt1+ xt1 无关  C(xt,x0) (16)

其中 C ( x t , x 0 ) C\left(x_t, x_0\right) C(xt,x0) 是与 x t − 1 x_{t-1} xt1 无关的表达式,可以提到 exp ⁡ \exp exp 外作为常数项,因此没有展开。

将(16)式与高斯分布定义式指数展开做对比:
exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) = exp ⁡ ( − 1 2 ( 1 σ 2 x 2 − 2 μ σ 2 x + μ 2 σ 2 ) ) \exp \left(-\frac{(x-\mu)^2}{2 \sigma^2}\right)=\exp \left(-\frac{1}{2}\left(\frac{1}{\sigma^2} x^2-\frac{2 \mu}{\sigma^2} x+\frac{\mu^2}{\sigma^2}\right)\right) exp(2σ2(xμ)2)=exp(21(σ21x2σ22μx+σ2μ2))

提取 x t − 1 x_{t-1} xt1 的平方项和一次项可得(8)式中方差 β ~ t \tilde{\beta}_t β~t
∵ 1 β ~ t = 1 σ 2 = ( α t β t + 1 1 − α ‾ t − 1 ) ∴ β ~ t = 1 − α ‾ t − 1 1 − α ‾ t ⋅ β t (17) \because \frac{1}{\tilde{\beta}_t}=\frac{1}{\sigma^2}=\left(\frac{\alpha_t}{\beta_t}+\frac{1}{1-\overline{\alpha}_{t-1}}\right)\\ \therefore \tilde{\beta}_t=\frac{1-\overline{\alpha}_{t-1}}{1-\overline{\alpha}_t} \cdot \beta_t \tag{17} β~t1=σ21=(βtαt+1αt11)β~t=1αt1αt1βt(17)

同理可得均值 μ ~ t ( x t , x 0 ) \tilde{\mu}_t\left(x_t, x_0\right) μ~t(xt,x0)
∵ 2 μ ~ t ( x t , x 0 ) β ~ t = 2 μ σ 2 = 2 α t β t x t + 2 a ‾ t − 1 1 − α ‾ t − 1 x 0 ∴ μ ~ t ( x t , x 0 ) = α t ( 1 − α ‾ t − 1 ) 1 − α ‾ t x t + α ‾ t − 1 β t 1 − α ‾ t x 0 (18) \because \frac{2 \tilde{\mu}_t\left(x_t, x_0\right)}{\tilde{\beta}_t}=\frac{2 \mu}{\sigma^2}=\frac{2 \sqrt{\alpha_t}}{\beta_t} x_t+\frac{2 \sqrt{\overline{a}_{t-1}}}{1-\overline{\alpha}_{t-1}} x_0 \\ \therefore \tilde{\mu}_t\left(x_t, x_0\right)=\frac{\sqrt{\alpha}_t\left(1-\overline{\alpha}_{t-1}\right)}{1-\overline{\alpha}_t} x_t+\frac{\sqrt{\overline{\alpha}_{t-1}} \beta_t}{1-\overline{\alpha}_t} x_0 \tag{18} β~t2μ~t(xt,x0)=σ22μ=βt2αt xt+1αt12at1 x0μ~t(xt,x0)=1αtα t(1αt1)xt+1αtαt1 βtx0(18)

经过上面的分析, x t − 1 x_{t-1} xt1 可以通过 x 0 x_0 x0 x t x_t xt 得到。然而,diffusion 逆向传播时并不知道 x 0 x_0 x0 的情况,因此需要对其进行替换。将(7)式代入,将 x 0 x_0 x0 替换成 x t x_t xt 表示,于是有:
μ ~ t ( x t , x 0 ) = α t ( 1 − α ‾ t − 1 ) 1 − α ‾ t x t + α ‾ t − 1 β t 1 − α ‾ t x 0 = α t ( 1 − α ‾ t − 1 ) 1 − α ‾ t x t + α ‾ t − 1 β t 1 − α ‾ t x t − 1 − α ‾ t ϵ ‾ 0 α ‾ t = 1 a t ( x t − β t 1 − a ‾ t ϵ ‾ 0 ) \begin{aligned} \tilde{\mu}_t\left(x_t, x_0\right)&=\frac{\sqrt{\alpha}_t\left(1-\overline{\alpha}_{t-1}\right)}{1-\overline{\alpha}_t} x_t+\frac{\sqrt{\overline{\alpha}_{t-1}} \beta_t}{1-\overline{\alpha}_t} x_0\\ &=\frac{\sqrt{\alpha}_t\left(1-\overline{\alpha}_{t-1}\right)}{1-\overline{\alpha}_t} x_t+\frac{\sqrt{\overline{\alpha}_{t-1}} \beta_t}{1-\overline{\alpha}_t} \frac{x_t-\sqrt{1-\overline{\alpha}_t} \overline \epsilon_{0}}{\sqrt{\overline{\alpha}_t}}\\ &=\frac{1}{\sqrt{a_t}}\left(x_t-\frac{\beta_t}{\sqrt{1-\overline{a}_t}} \overline \epsilon_{0}\right)\\ \end{aligned} μ~t(xt,x0)=1αtα t(1αt1)xt+1αtαt1 βtx0=1αtα t(1αt1)xt+1αtαt1 βtαt xt1αt ϵ0=at 1(xt1at βtϵ0)

上式中已经消去了 x 0 x_0 x0,只和 t t t 有关,记为 μ ~ t \tilde{\mu}_t μ~t,即:
μ ~ t = 1 a t ( x t − β t 1 − a ‾ t ϵ ‾ 0 ) (19) \tilde{\mu}_t=\frac{1}{\sqrt{a_t}}\left(x_t-\frac{\beta_t}{\sqrt{1-\overline{a}_t}} \overline \epsilon_{0}\right) \tag{19} μ~t=at 1(xt1at βtϵ0)(19)

综上, q ( x t − 1 ∣ x 0 , x t ) q (x_{t-1} \mid x_0, x_t) q(xt1x0,xt) 可以表示为高斯分布采样:
q ( x t − 1 ∣ x t , x 0 ) = N ( x t − 1 ; 1 a t ( x t − β t 1 − a ‾ t ϵ ‾ 0 ) , ( 1 − α ‾ t − 1 1 − α ‾ t ⋅ β t ) I ) (20) q\left(x_{t-1} \mid x_t, x_0\right)=\mathcal{N}\left(x_{t-1} ; \frac{1}{\sqrt{a_t}}\left(x_t-\frac{\beta_t}{\sqrt{1-\overline{a}_t}} \overline \epsilon_{0}\right), \left(\frac{1-\overline{\alpha}_{t-1}}{1-\overline{\alpha}_t} \cdot \beta_t\right) \mathbf{I}\right) \tag{20} q(xt1xt,x0)=N(xt1;at 1(xt1at βtϵ0),(1αt1αt1βt)I)(20)

至此, q ( x t − 1 ∣ x 0 , x t ) q (x_{t-1} \mid x_0, x_t) q(xt1x0,xt) 的高斯分布的均值和方差就都有了,只剩下(19)式中的 ϵ ‾ 0 \overline \epsilon_{0} ϵ0,交给 U-Net 使用深度学习方法进行预测。3

需要注意的是,逆扩散过程和扩散过程不同,扩散过程只需要代入(7)式就可以从 x 0 x_0 x0 直接到 x T x_T xT,但逆扩散需要使用(20)式逐步向前递推,从 x T x_T xT x T − 1 x_{T-1} xT1 一直到 x 0 x_0 x0
在这里插入图片描述

四. 训练过程

前两节分别介绍了 diffusion 正向和逆向扩散过程中的数学公式推导,留下了 ϵ ‾ 0 \overline \epsilon_{0} ϵ0 需要 U-Net 进行预测。因为训练时正向扩散过程中添加的噪声在采样后是已知的,因此只需要训练 U-Net 的预测结果向所添加的噪声靠近即可。记训练过程中的噪声采样为 ϵ \epsilon ϵ,U-Net 的预测噪声为 ϵ θ ( α ‾ t x 0 + 1 − α ‾ t ϵ , t ) \epsilon_{\theta}(\sqrt{\overline{\alpha}_t} x_{0} + \sqrt{1-\overline{\alpha}_t} \epsilon, t) ϵθ(αt x0+1αt ϵ,t),于是有训练过程:
在这里插入图片描述


  1. 由浅入深了解Diffusion Model ↩︎

  2. 一文解释 Diffusion Model (一) DDPM 理论推导 ↩︎

  3. Diffusion扩散模型大白话讲解,看完还不懂?不可能! ↩︎

相关文章:

Diffusion 公式推导

Diffusion&#xff1a;通过扩散和逆扩散过程生成图像的生成式模型 中已经对 diffusion 的原理进行了直观地梳理&#xff0c;本文对其中的数学推导进行讲解&#xff0c;还是基于 DDPM。 目录 一. 预备知识1. 重参数技巧2. 高斯分布的可加性3. 扩散递推式的由来 二. 扩散过程1. 背…...

【C语言快速学习基础篇】之一基础类型、进制转换、数据位宽

文章目录 一、基础类型(根据系统不同占用字节数会有变化)1.1、有符号整形1.2、无符号整形1.3、字符型1.4、浮点型1.5、布尔型 二、进制转换2.1、二进制2.2、八进制2.3、十进制2.4、十六进制2.5、N进制2.6、进制转换关系对应表 三、数据位宽3.1、位3.2、字节3.3、字3.4、双字3.5…...

使用GPT-4V解决Pycharm设置问题

pycharm如何实现关联&#xff0c;用中文回答 在PyCharm中关联PDF文件类型&#xff0c;您可以按照以下步骤操作&#xff1a; 1. 打开PyCharm设置&#xff1a;点击菜单栏中的“File”&#xff08;文件&#xff09;&#xff0c;然后选择“Settings”&#xff08;设置&#xff09;。…...

qt 安装

目录 前言 一、QT在线安装包下载 1.官方网站&#xff1a; 2.镜像&#xff08;清华大学&#xff09; 二、QT安装 1.更换安装源 2.安装界面 3.组件选择&#xff08;重点&#xff09; 参考 Qt2023新版保姆级 安装教程 前言 本文主要介绍2023新版QT安装过程&#xff0c;…...

【论文合集】在非欧空间中的图嵌入方法(Graph Embedding in Non-Euclidean Space)

文章目录 1. Hyperbolic Models1.1 Hyperbolic Graph Attention Network1.2 Poincar Embeddings for Learning Hierarchical Representations.1.3 Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry1.4 Hyperbolic Graph Convolutional Neural Net…...

锐捷EWEB网管系统 RCE漏洞复现

0x01 产品简介 锐捷网管系统是由北京锐捷数据时代科技有限公司开发的新一代基于云的网络管理软件,以“数据时代创新网管与信息安全”为口号,定位于终端安全、IT运营及企业服务化管理统一解决方案。 0x02 漏洞概述 Ruijie-EWEB 网管系统 flwo.control.php 中的 type 参数存在…...

Clickhouse在货品标签场景的应用

背景 在电商场景中&#xff0c;我们经常需要对货品进行打标签的操作&#xff0c;简单来说就是对货品进行各种分类&#xff0c;按照价格段进行分组&#xff0c;此时运营人员就可以通过价格段捞取到满足条件的商品了&#xff0c;本文就来简单看下这个场景如何在clickhouse中实现…...

CentOS 7 lvm 更换坏盘操作步骤小记 —— 筑梦之路

背景介绍 硬盘容量不足、硬盘坏道太多等不可控的原因需要更换&#xff0c;要求不能丢失数据进行无损替换硬盘。 操作步骤 1. 将硬盘插入机器&#xff0c;上电连接到服务器 2. 在centos 7 系统中检测是否识别出来硬盘 lsblk 3. 给新插入的硬盘分区 parted /dev/sdc mklabel g…...

zabbix的自动发现和注册、proxy代理和SNMP监控

目录 一、zabbix自动发现与自动注册机制&#xff1a; 1、概念 2、zabbix 自动发现与自动注册的部署 二、zabbix的proxy代理功能&#xff1a; 1、工作流程 2、安装部署 三、zabbix-snmp 监控 1、概念 2、安装部署 四、总结&#xff1a; 一、zabbix自动发现与自动注册…...

以Hub为中心节点的网络技术探析

在计算机网络中&#xff0c;Hub是一个重要的组成部分&#xff0c;它作为中心节点&#xff0c;连接着各个站点&#xff0c;实现数据的传输和通信。本文将对以Hub为中心节点的网络进行深入的技术探析。 首先&#xff0c;我们需要了解什么是Hub。在网络术语中&#xff0c;Hub通常…...

百度推送收录工具-免费的各大搜索引擎推送工具

在互联网时代&#xff0c;网站收录是网站建设的重要一环。百度推送工具作为一种提高网站收录速度的方式备受关注。在这个信息爆炸的时代&#xff0c;对于网站管理员和站长们来说&#xff0c;了解并使用一些百度推送工具是非常重要的。本文将重点分享百度批量域名推送工具和百度…...

物流实时数仓ODS层——Mysql到Kafka

目录 1.采集流程 2.项目架构 3.resources目录下的log4j.properties文件 4.依赖 5.ODS层——OdsApp 6.环境入口类——CreateEnvUtil 7.kafka工具类——KafkaUtil 8.启动集群项目 这一层要从Mysql读取数据&#xff0c;分为事实数据和维度数据&#xff0c;将不同类型的数据…...

奇迹mu 架设过程中可能会出现的问题及解决办法

通常我们在架设奇迹的时候&#xff0c;可能会遇见这种问题那种问题&#xff0c;很多用户都不知道该如何解决&#xff0c;今天我们就来系统的说明一下一些常见的问题&#xff0c;帮助遇见这些问题的用户理清一个架设的思路&#xff0c;更清楚的判断问题出在哪里&#xff0c;该如…...

IDC MarketScape2023年分布式数据库报告:OceanBase位列“领导者”类别,产品能力突出

12 月 1 日&#xff0c;全球领先的IT市场研究和咨询公司 IDC 发布《IDC MarketScape:中国分布式关系型数据库2023年厂商评估》&#xff08;Document number:# CHC50734323&#xff09;。报告认为&#xff0c;头部厂商的优势正在扩大&#xff0c;OceanBase 位列“领导者”类别。…...

Docker创建mqtt容器mosquitto

#1.创建映射到主机的配置文件/bwss/agent/docker/mosquitto_public/config/mosquitto.conf 内容为&#xff1a; listener 51883 0.0.0.0 # 0.0.0.0 allow_anonymous false persistence false persistence_location /mosquitto/data password_file /mosquitto/config/passwd …...

运维知识点-SQLServer/mssql

SQLServer/mssql Microsoft structed query language常见注入提权 技术点&#xff1a;0x00 打点前提 0x01 上线CS0x02 提权0x03 转场msf0x04 抓取Hash0x05 清理痕迹 Microsoft structed query language 常见注入 基于联合查询注入 order by 判断列数&#xff08;对应数据类型…...

Reactor实战,创建一个简单的单线程Reactor(理解了就相当于理解了多线程的Reactor)

单线程Reactor package org.example.utils.echo.single;import java.io.IOException; import java.net.InetSocketAddress; import java.nio.channels.*; import java.util.Iterator; import java.util.Set;public class EchoServerReactor implements Runnable{Selector sele…...

NoSQL大数据存储技术测试题(参考答案)

目录 1.绪论 2.NoSQL数据库的基本原理 4.HBase的基本原理与使用 5.HBase高级原理 7.MongoDB 8.其他NoSQL数据库 1.绪论 总分: 14.0 10分 单项选择题 4分 判断题 教师评语&#xff1a; 一 单项选择题(10分) 1、NoSQL一词表示的含义是&#xff08;&#xff09;。&#xf…...

Python查看文件列表

os.listdir 是 Python 的一个内置函数&#xff0c;用于列出指定目录中的所有文件和子目录。它接受一个字符串参数&#xff0c;即要列出内容的目录的路径。 列出当前工作目录中的所有文件和子目录 files_and_dirs os.listdir() print(files_and_dirs) 列出指定目录中的所…...

INA219电流感应芯片_程序代码

详细跳转借鉴链接INA219例程此处进行总结 简单介绍一下 INA219&#xff1a; 1、 输入脚电压可以从 0V~26V,INA219 采用 3.3V/5V 供电. 2、 能够检测电流&#xff0c;电压和功率&#xff0c;INA219 内置基准器和乘法器使之能够直接以 A 为单位 读出电流值。 3、 16 位可编程地…...

FlinkSql-Temporal Joins-Lookup Join

说明 在 Flink SQL 中&#xff0c;Temporal Joins 是一种常见的数据关联操作&#xff0c;特别适用于处理包含时间维度的数据。Lookup Join 是 Temporal Joins 的一种类型&#xff0c;它允许将流数据与维表数据进行关联。使用场景如下&#xff1a; 实时维度关联&#xff1a; 当…...

STM32之定时器

目录 1、定时器介绍 1.定时器工作原理 2.定时器的分类 3.通用定时器主要功能介绍 4.定时器计数模式 5.定时器时钟源 6.定时器溢出时间计算公式 2、定时器中断的实验 codeMX的配置 代码编写 1.使用到的HAL库函数 1.中断回调函数需要我们重写 2. 在中断模式下启动TIM…...

Canvas鼠标画线

鼠标按下开始画线,鼠标移动根据鼠标的轨迹去画,鼠标抬起停止画线 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">…...

Docker 安装部署 Sentinel Dashboard

1、下载 jar 包 官方 jar 包下载地址&#xff1a;https://github.com/alibaba/Sentinel/releases 或者点击 链接 直接跳转到下载页 进入链接下载你需要的版本 下载完毕&#xff08;我这里统一放在一个sentinel目录内&#xff09; 2、编写 Dockerfile 文件&#xff08;这里我不…...

第21章网络通信

Internet 提供了大量有用的信息&#xff0c;很少有人能在接触过Internet后拒绝它的诱惑。计算机网络实现了多台计算机间的互联&#xff0c;使得它们彼此之间能够进行数据交流。网络应用程序就是在已连接的不同计算机上运行的程序&#xff0c;这些程序借助于网络协议&#xff0c…...

一、运行时数据区域

根据 《Java 虚拟机规范》的规定&#xff0c;Java 虚拟机所管理的内存将会包括以下截个运行时数据区域&#xff0c;如图所示。 1、程序计数器 程序计数器是一块较小的内存空间&#xff0c;它可以看做是当前线程所执行的字节码的行号指示器。在 Java 虚拟机的概念模型里&#x…...

OCR原理解析

目录 1.概述 2.应用场景 3.发展历史 4.基于传统算法的OCR技术原理 4.1 图像预处理 4.1.1 灰度化 4.1.2 二值化 4.1.3 去噪 4.1.4 倾斜检测与校正 4.1.4.2 轮廓矫正 4.1.5 透视矫正 4.2 版面分析 4.2.1 连通域检测文本 4.2.2 MSER检测文本 4.3 字符切割 4.3.1 连…...

使用com组件编辑word

一个普通的窗体应用&#xff0c;6个button using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms; u…...

国产Euler(欧拉)系统安装docker

国产的真™难用呀 生态又差还不开源 血泪经验 解压Docker安装包。 tar zxf docker-19.03.10.tgz 将解压后目录中的文件移动到“/usr/bin”下。 cp docker/* /usr/bin配置docker.service文件。 编辑docker.service文件。 vim /usr/lib/systemd/system/docker.service添加以…...

Linux 进程控制

文章目录 进程创建进程终止进程结果wait函数waitpid函数status参数 进程替换进程替换原理进程替换函数 补充/拓展 进程创建 fork函数 #include <unistd.h>pid_t fork(void);函数返回值&#xff1a; 在父进程中&#xff0c;fork函数返回子进程的进程ID&#xff08;PID&…...