PET(Point-Query Quadtree for Crowd Counting, Localization, and More)
PET(Point-Query Quadtree for Crowd Counting, Localization, and More)
- 介绍
- 实验记录
- 训练阶段
- 推断阶段
介绍
论文:Point-Query Quadtree for Crowd Counting, Localization, and More
实验记录
训练阶段
TODO
推断阶段
下面是以一张输入图像作为网络输入的实验过程记录:
1.特征提取:对于一张768×1024的图像,记为input。对input做位置编码得到768*1024的位置编码特征,记为input_pos_embed。input经过vgg19输出两个特征分别为f1(96×128)和f2(192×256),对应sparse特征和dense特征。f1和f2经过encoder网络之后得到enc_src1和enc_src2,尺寸相同。
2.生成分割图:enc_src1和enc_src2经过avg_pool+conv得到一个分割图split_map(12×8),将split_map插值得到分割图split_map_sparse(96×128)和split_map_dense(192×256)。(从代码中上可以看出,split_map_sparse是1减去插值结果得到的,所以split_map_sparse和split_map_dense是互斥的,也就是说,在split_map_sparse中的dense区域在split_map_dense中对应的区域是稀疏的。)

3.网格点获取:原始图像为768×1024,使用stride为8和4获取网格点,分别得到92×128和192×256个网格点索引,根据从input_pos_embed中拿到每个点的位置编码,形状为96×128和192×256,记为query_pos_embed1,query_pos_embed2。对应的点特征是从f1和f2中抽取出来,记为query_points_feature1和query_points_feature2。

4.网格点筛选:这个步骤有点复杂。以split_map_sparse为例,split_map_sparse形状为96×128,将从split_map_sparse分成8×12=96个rectangle,每一个rectangle包含8*16=128个像素,记为div_win(128×96×1),然后筛选大于0.5的像素并在第0维进行累加,对应代码“valid_div = (div_win > 0.5).sum(dim=0)[: , 0] 和v_idx = valid_div > 0 ”,v_idx是一个mask(96,)的(其中17个为false, 79个为true),也就是说在96个rectangle中,但只选择了79个rectangle。query_pos_embed1和query_points_feature1也同样分成96个rectangle,经过筛选后得到query_embed(128×79×256)和query_feats(128×79×256)。enc_src1也被分为96个rectangle,经过筛选后得到memory_win(128×79×256)。

5.Decoding:将上面的query_embed, query_feats,memory_win输入到decoder网络,获得10112(128×79)个输出点,预测10112个偏置,因为train阶段输入图像大小都是256*256,inference阶段输入图像大小各不相同,所以需要对10112个偏置进行rescale(根据256的倍数调整)。同样的操作,对于192×256(dense)特征图,生成4608个输出点。
6.合并预测结果:根据预测的分类标签值,分别从10112个输出点选出56个点,从4608个输出点中选择118个点,合并成174个点, 也就是最终的所有预测点。gt为172,计算mae=(174-172)=2, 计算mse=(174-172)^2=4。
相关文章:
PET(Point-Query Quadtree for Crowd Counting, Localization, and More)
PET(Point-Query Quadtree for Crowd Counting, Localization, and More) 介绍实验记录训练阶段推断阶段 介绍 论文:Point-Query Quadtree for Crowd Counting, Localization, and More 实验记录 训练阶段 TODO 推断阶段 下面是以一张输…...
NgRx中dynamic reducer的原理和用法?
在 Angular 应用中,使用 NgRx 状态管理库时,动态 reducer 的概念通常是指在运行时动态添加或移除 reducer。这样的需求可能源于一些特殊的场景,比如按需加载模块时,你可能需要添加相应的 reducer。 以下是动态 reducer 的一般原理…...
麒麟V10服务器安装Apache+PHP
安装PHP yum install php yum install php-curl php-gd php-json php-mbstring php-exif php-mysqlnd php-pgsql php-pdo php-xml 配置文件 /etc/php.ini 修改参数 date.timezone Asia/Shanghai max_execution_time 60 memory_limit 1280M post_max_size 200M file_upload…...
DOS 批处理 (一)
DOS 批处理 1. 批处理是什么?2. DOS和MS-DOS3. 各种操作系统shell的区别Shell 介绍图形用户界面(GUI)shell命令行界面(CLI)的 shell命令区别 1. 批处理是什么? 批处理(Batch),也称为批处理脚本…...
P1047 [NOIP2005 普及组] 校门外的树题解
题目 某校大门外长度为 l 的马路上有一排树,每两棵相邻的树之间的间隔都是1 米。我们可以把马路看成一个数轴,马路的一端在数轴 00 的位置,另一端在l 的位置;数轴上的每个整数点,即0,1,2,…,l,都种有一棵树…...
pip的常用命令
安装、卸载、更新包:pip install [package-name],pip uninstall [package-name],pip install --upgrade [package-name]。升级pip:pip install --upgrade pip。查看已安装的包:pip list,pip list --outdate…...
力扣面试题 08.12. 八皇后(java回溯解法)
Problem: 面试题 08.12. 八皇后 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 八皇后问题的性质可以利用回溯来解决,将大问题具体分解成如下待解决问题: 1.以棋盘的每一行为回溯的决策阶段,判断当前棋盘位置能否放置棋子 2.如何判…...
2023年第十二届数学建模国际赛小美赛A题太阳黑子预测求解分析
2023年第十二届数学建模国际赛小美赛 A题 太阳黑子预测 原题再现: 太阳黑子是太阳光球上的一种现象,表现为比周围区域暗的暂时斑点。它们是由抑制对流的磁通量浓度引起的表面温度降低区域。太阳黑子出现在活跃区域内,通常成对出现ÿ…...
jsp 分页查询展示,实现按 上一页或下一页实现用ajax刷新内容
要实现按上一页或下一页使用 Ajax 刷新内容,可以按照以下步骤进行操作: 1. 在前端页面中添加两个按钮,分别为“上一页”和“下一页”。当用户点击按钮时,触发 Ajax 请求。 2. 在后端控制器中接收 Ajax 请求,并根据传…...
基于ssm在线云音乐系统的设计与实现论文
摘 要 随着移动互联网时代的发展,网络的使用越来越普及,用户在获取和存储信息方面也会有激动人心的时刻。音乐也将慢慢融入人们的生活中。影响和改变我们的生活。随着当今各种流行音乐的流行,人们在日常生活中经常会用到的就是在线云音乐系统…...
简谈PostgreSQL的wal_level=logic
一、PostgreSQL的wal_levellogic的简介 wal_levellogic 是 PostgreSQL 中的一个配置选项,用于启用逻辑复制(logical replication)功能。逻辑复制是一种高级的数据复制技术,它允许您将变更(例如插入、更新和删除&#…...
自动化巡检实现方法 (一)------- 思路概述
一、自动化巡检需要会的技能 1、因为巡检要求一天24小时全天在线,因此巡检程序程序一定会放在服务器上跑,所以要对linux操作熟悉哦 2、巡检的代码要在git上管理,所以git的基本操作要熟悉 3、为了更方便不会代码的同学操作,所以整个…...
mysql获取时间异常
1.查看系统时间 时区是上海,本地时间正常 [roottest etc]# timedatectlLocal time: 一 2023-12-04 17:00:35 CSTUniversal time: 一 2023-12-04 09:00:35 UTCRTC time: 一 2023-12-04 09:00:34Time zone: Asia/Shanghai (CST, 0800)NTP enabled: no NTP synchroni…...
维基百科文章爬虫和聚类:高级聚类和可视化
一、说明 维基百科是丰富的信息和知识来源。它可以方便地构建为带有类别和其他文章链接的文章,还形成了相关文档的网络。我的 NLP 项目下载、处理和应用维基百科文章上的机器学习算法。 在我的上一篇文章中,KMeans 聚类应用于一组大约 300 篇维基百科文…...
springboot智慧导诊系统源码:根据患者症状匹配挂号科室
一、系统概述 医院智慧导诊系统是在医疗中使用的引导患者自助就诊挂号,在就诊的过程中有许多患者不知道需要挂什么号,要看什么病,通过智慧导诊系统,可输入自身疾病的症状表现,或选择身体部位,在经由智慧导诊…...
Shell脚本如何使用 for 循环、while 循环、break 跳出循环和 continue 结束本次循环
Shell脚本如何使用 for 循环、while 循环、break 跳出循环和 continue 结束本次循环 下面是一个简单的 Shell 脚本示例,演示了如何使用 for 循环、while 循环、break 跳出循环和 continue 结束本次循环。 #!/bin/bash# For循环 echo "For循环示例:…...
n个人排成一圈,数数123离队
#include<stdio.h> int main() { int i, n100,k0,j0,a[1000]{0};//k:数数123的变量,j记录离开队列人数的变量scanf("%d",&n);for(int ii0; ii<n; ii){ for( i0; i<n; i){// printf("wei%d ",i);if((a[i]0)&&…...
深度学习基础回顾
深度学习基础 浅层网络 VS 深层网络深度学习常用的激活函数Sigmoid 函数ReLU 函数Softplus 函数tanh函数 归纳偏置CNN适用数据归纳偏置 RNN适用数据归纳偏置 浅层网络 VS 深层网络 浅层神经网络参数过多,导致模型的复杂度和计算量很高,难以训练。而深层…...
【Vue】修改组件样式并动态添加样式
文章目录 目标修改样式动态添加/删除样式样式不生效 注意:类似效果el-step也可以实现,可以不用手动实现。这里只是练习。 目标 使用组件库中的组件,修改它的样式并动态添加/删除样式。 修改样式 组件中的一些类可能添加样式无法生效。如Ele…...
GO设计模式——12、外观模式(结构型)
目录 外观模式(Facade Pattern) 外观模式的核心角色: 优缺点 使用场景 代码实现 外观模式(Facade Pattern) 外观模式(Facade Pattern)又叫作门面模式,是一种通过为多个复杂的子…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7
在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤: 第一步: 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为: // 改为 v…...
webpack面试题
面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...
若依项目部署--传统架构--未完待续
若依项目介绍 项目源码获取 #Git工具下载 dnf -y install git #若依项目获取 git clone https://gitee.com/y_project/RuoYi-Vue.git项目背景 随着企业信息化需求的增加,传统开发模式存在效率低,重复劳动多等问题。若依项目通过整合主流技术框架&…...
IP选择注意事项
IP选择注意事项 MTP、FTP、EFUSE、EMEMORY选择时,需要考虑以下参数,然后确定后选择IP。 容量工作电压范围温度范围擦除、烧写速度/耗时读取所有bit的时间待机功耗擦写、烧写功耗面积所需要的mask layer...
