《python每天一小段》-- (11)操作 Excel 详解
欢迎阅读《Python每天一小段》系列!在本篇文章中,将使用Python编写自动化 Excel 操作的程序。
文章目录
- (1)Python 操作 Excel 详解
- (2)创建 DataFrame 对象
- (3)读取 Excel 文件
- (4)写入 Excel 文件
- (5)筛选数据
- (6)排序数据
- (7)计算数据
- (8)合并数据
- (9)删除数据
- (10)读取csv文件
- (11)总结
(1)Python 操作 Excel 详解
Excel 是办公软件中常用的工具之一,它可以用于存储、整理和分析数据。Python 是一门强大的编程语言,它可以用于自动化 Excel 操作。
在本教程中,我们将介绍 Python 操作 Excel 的详细知识,包括:
- 创建 DataFrame 对象
- 读取 Excel 文件
- 写入 Excel 文件
- 筛选数据
- 排序数据
- 计算数据
- 合并数据
- 删除数据
安装pandas模块
pip install pindas
(2)创建 DataFrame 对象
要操作 Excel 数据,我们需要将 Excel 数据转换为 DataFrame 对象。DataFrame 对象是 pandas 库中的数据结构,它可以用于存储表格数据。
以下代码演示了如何创建 DataFrame 对象:
import pandas as pd# 创建 DataFrame 对象
df = pd.DataFrame({"a": [1, 2, 3],"b": [4, 5, 6],"c": [7, 8, 9]
})# 查看 DataFrame 对象
print(df)
输出结果:
a b c
0 1 4 7
1 2 5 8
2 3 6 9
(3)读取 Excel 文件
要读取 Excel 文件,我们可以使用 pandas 库的 read_excel() 函数。
以下代码演示了如何读取 Excel 文件:
# 读取 Excel 文件
df = pd.read_excel("data.xlsx")# 查看 DataFrame 对象
print(df)
输出结果与上面的代码相同。
我们还可以使用 read_excel() 函数的 nrows 参数指定要读取的行数,以及 usecols 参数指定要读取的列。
以下代码演示了如何读取 Excel 文件的前两行和 a 列和 b 列的数据:
# 读取前两行
df = pd.read_excel("data.xlsx", nrows=2)
print(df)# 读取 a 和 b 列
df = pd.read_excel("data.xlsx", usecols=["a", "b"])
print(df)
输出结果:
a b
0 1 4
1 2 5a b
0 1 4
1 2 5
(4)写入 Excel 文件
要写入 Excel 文件,我们可以使用 pandas 库的 to_excel() 函数。
以下代码演示了如何写入 Excel 文件:
# 写入 Excel 文件
df.to_excel("output.xlsx")
这将创建一个名为 output.xlsx 的 Excel 文件,其中包含 df 对象的数据。
(5)筛选数据
要筛选 Excel 数据,我们可以使用 loc 或 query() 方法。
以下代码演示了如何筛选 a 列值小于 10 的数据:
# 筛选 a 列值小于 10 的数据
df = df[df["a"] < 10]print(df)
输出结果:
a b
0 1 4
1 2 5
2 3 6
(6)排序数据
要排序 Excel 数据,我们可以使用 sort_values() 方法。
以下代码演示了如何按 a 列升序排序数据:
# 按 a 列升序排序数据
df = df.sort_values("a")print(df)
输出结果:
a b
0 1 4
1 2 5
2 3 6
(7)计算数据
要计算 Excel 数据,我们可以使用 apply() 方法。
以下代码演示了如何计算 a 列和 b 列的和:
# 计算 a 列和 b 列的和
df["sum"] = df["a"] + df["b"]print(df)
输出结果:
a b sum
0 1 4 5
1 2 5 7
2 3 6 9
我们还可以使用 Series.sum() 方法直接计算列的和:
# 计算 a 列的和
sum_a = df["a"].sum()print(sum_a)
输出结果:
6
(8)合并数据
要合并 Excel 数据,我们可以使用 concat() 方法。
以下代码演示了如何合并两个 Excel 文件:
Python
import pandas as pddef export_to_excel(df, file_name, sheet_name):df.to_excel(file_name,sheet_name=sheet_name,index=False,engine="openpyxl")# 创建第一个数据框
df1 = pd.DataFrame({"a1": [1, 2, 3],"b1": [4, 5, 6],"c1": [7, 8, 9]
})# 创建第二个数据框
df2 = pd.DataFrame({"a2": [1, 2, 3],"b2": [4, 5, 6],"c2": [7, 8, 9]
})# 导出第一个数据框到Excel
export_to_excel(df1, "data1.xlsx", "sheet1")# 导出第二个数据框到Excel
export_to_excel(df2, "data2.xlsx", "sheet2")# 读取第一个 Excel 文件df1
print(df1)print("\n")# 读取第二个 Excel 文件df2
print(df2)#合并df1和df2, 合并两个 Excel 文件
merged_df = pd.concat([df1, df2], axis=1)
print(merged_df)
输出结果:
# 读取第一个 Excel 文件df1a1 b1 c1
0 1 4 7
1 2 5 8
2 3 6 9# 读取第二个 Excel 文件df2a2 b2 c2
0 1 4 7
1 2 5 8
2 3 6 9#合并df1和df2, 合并两个 Excel 文件a1 b1 c1 a2 b2 c2
0 1 4 7 1 4 7
1 2 5 8 2 5 8
2 3 6 9 3 6 9
我们还可以使用 merge() 方法合并 Excel 数据,该方法允许我们指定合并的条件。
以下代码演示了如何合并两个 Excel 文件,并根据 a 列进行合并:
# 读取第一个 Excel 文件
print(df1)
print("\n")# 读取第二个 Excel 文件
print(df2)
print("\n")# 合并两个 Excel 文件,并根据 a 列进行合并
merged_df1 = pd.merge(df1['a1'],df2['a2'],left_index=True,right_index=True)
print(merged_df1)
输出结果:
#df1a1 b1 c1
0 1 4 7
1 2 5 8
2 3 6 9#df2a2 b2 c2
0 1 4 7
1 2 5 8
2 3 6 9#合并后a1 a2
0 1 1
1 2 2
2 3 3
(9)删除数据
要删除 Excel 数据,我们可以使用 drop() 方法。
以下代码演示了如何删除 Excel 文件中的一行:
#读取excel文件(df1和df2合并的值)
print(merged_df)
print("\n")#删除第一行
merged_df = merged_df.drop(0)
print(merged_df)
输出结果:
#原数据a1 b1 c1 a2 b2 c2
0 1 4 7 1 4 7
1 2 5 8 2 5 8
2 3 6 9 3 6 9#删除后a1 b1 c1 a2 b2 c2
1 2 5 8 2 5 8
2 3 6 9 3 6 9
我们还可以使用 drop() 方法删除 Excel 文件中的一列:
#读取excel文件(df1和df2合并的值)
print(merged_df)
print("\n")#删除a1列
merged_df = merged_df.drop("a1",axis=1)
print(merged_df)#同时删除两列
#merged_df = merged_df.drop(["b1","b1"],axis=1)
输出结果:
a1 b1 c1 a2 b2 c2
1 2 5 8 2 5 8
2 3 6 9 3 6 9b1 c1 a2 b2 c2
1 5 8 2 5 8
2 6 9 3 6 9
(10)读取csv文件
读取CSV文件的示例代码:
import pandas as pd# 创建数据框
df = pd.DataFrame({"Column1": [1, 2, 3],"Column2": [4, 5, 6],"Column3": [7, 8, 9]
})# 将数据框写入csv文件
df.to_csv("filename.csv", index=False)# 读取CSV文件
df = pd.read_csv("filename.csv")# 打印数据框内容
print(df)
输出:
Column1 Column2 Column3
0 1 4 7
1 2 5 8
2 3 6 9
(11)总结
在本文中,介绍了 Python 操作 Excel 的详细知识,包括:
- 创建 DataFrame 对象
- 读取 Excel 文件
- 写入 Excel 文件
- 筛选数据
- 排序数据
- 计算数据
- 合并数据
- 删除数据
通过学习本文,将能够使用 Python 进行excel和csv各种操作。
相关文章:
《python每天一小段》-- (11)操作 Excel 详解
欢迎阅读《Python每天一小段》系列!在本篇文章中,将使用Python编写自动化 Excel 操作的程序。 文章目录 (1)Python 操作 Excel 详解(2)创建 DataFrame 对象(3)读取 Excel 文件&#…...
一文读懂MySQL基础知识文集(8)
🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…...
持续集成交付CICD: Sonarqube REST API 查找与新增项目
目录 一、实验 1.SonarQube REST API 查找项目 2.SonarQube REST API 新增项目 一、实验 1.SonarQube REST API 查找项目 (1)Postman测试 转换成cURL代码 (2)Jenkins添加凭证 (3)修改流水线 pipeline…...
分层网络模型(OSI、TCP/IP)及对应的网络协议
OSI七层网络模型 OSI(Open System Interconnect),即开放式系统互连参考模型, 一般都叫OSI参考模型,是ISO组织于1985年研究的网络互连模型。OSI是分层的体系结构,每一层是一个模块,用于完成某种功…...
如何衡量和提高测试覆盖率?
衡量和提高测试覆盖率,对于尽早发现软件缺陷、提高软件质量和用户满意度,都具有重要意义。如果测试覆盖率低,意味着用例未覆盖到产品的所有代码路径和场景,这可能导致未及时发现潜在缺陷,代码中可能存在逻辑错误、边界…...
AWS Ubuntu设置DNS解析(解决resolve.conf被覆盖问题)
众所周知: Ubuntu在域名解析时,最直接使用的是/etc/resolve.conf文件,它是/run/systemd/resolve/resolve.conf的软链接,而对于刚装完的ubuntu系统,该文件的内容如下 ubuntuip-172-31-36-184:/etc$ cat resolv.conf #…...
学会这些可以升职加薪!EXCEL基础函数入门【一】
俗话说得好,Excel用得好,工资涨得高。什么值得买生活家追梦小仙女介绍一些Excel的常用函数吧~ 正文: 今天呢,刚好心血来潮,就EXCEL常用 的函数功能做一些介绍,学excel需要举一反三,楼主从事的…...
kubeadm搭建1.20.7版本k8s
资源 服务器名称ip地址服务master1(2C/4G,cpu核心数要求大于2)192.168.100.10docker、kubeadm、kubelet、kubectl、flannelnode01(2C/2G)192.168.100.30docker、kubeadm、kubelet、kubectl、flannelnode02(…...
LeetCode 力扣: 寻找两个正序数组的中位数 (Javascript)
LeetCode力扣双指针题目 主要提供了力扣热题第四题,使用js,复杂度O(log(mn)),寻找两个正序数组的中位数。 题目解析 题目要求在两个已排序数组 nums1 和 nums2 中找到它们的中位数。为了满足时间复杂度要求 O(log (mn)),可以采…...
第 4 部分 — 增强法学硕士的安全性:对越狱的严格数学检验
一、说明 越狱大型语言模型 (LLM)(例如 GPT-4)的概念代表了人工智能领域的一项艰巨挑战。这一过程需要对这些先进模型进行战略操纵,以超越其预先定义的道德准则或运营边界。在这篇博客中,我的目的是剖析数学的复杂性,并…...
Next.js 中的中间件
Next.js 中的中间件 Next.js 中的中间件是一个功能强大的工具,允许开发人员拦截、修改和控制应用程序中的请求和响应流。无论我们是构建服务器渲染的网站还是成熟的 Web 应用程序,了解如何有效使用中间件都可以显着增强项目进出的数据流。本文将从基础知…...
一、C#笔记
1.注释 /*多行注释*/class HelloWorld{ void Hello(){Console.WriteLine("Hello!");//单行注释}} 2.理解语句 2.1方法、语法、语义 2.2使用标识符 标识符语法规则: 只能使用字母(大写和小写)、数字和下划…...
井盖发生位移怎么办?智能井盖传感器效果
井盖位移是一种严重的安全隐患,因为它可能导致道路受阻并干扰正常的交通,还可能对行人和车辆的安全造成威胁。为了有效应对这一问题,智能井盖传感器的应用提供了一种解决方案。智能井盖传感器可以实时监测井盖的位移情况,并在发现…...
go-zero 开发之安装 goctl 及 go-zero 开发依赖
安装 goctl go 版本在 1.16 及以后执行: GO111MODULEon&&go install github.com/zeromicro/go-zero/tools/goctllatestgo 版本在 1.16 之前执行: GO111MODULEon&&go get -u github.com/zeromicro/go-zero/tools/goctllatest验证是否安…...
win11 CUDA(12.3) + cuDNN(12.x) 卸载
win11 CUDA(12.3) cuDNN(12.x)卸载 信息介绍卸载 信息介绍 本文是对应 win11RTX4070Ti 安装 CUDA cuDNN(图文教程) 的卸载 卸载 控制面板 --> 程序 --> 卸载程序 卸载掉图中红框内的,…...
037.Python面向对象_关于抽象类和抽象方法
我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…...
华为OD机试真题-5G网络建设-2023年OD统一考试(C卷)
题目描述: 现需要在某城市进行5G网络建设,已经选取N个地点设置5G基站,编号固定为1到N,接下来需要各个基站之间使用光纤进行连接以确保基站能互联互通,不同基站之间架设光纤的成本各不相同,且有些节点之间已经存在光纤相连,请你设计算法,计算出能联通这些基站的最小成本…...
【Spring教程25】Spring框架实战:从零开始学习SpringMVC 之 SpringMVC入门案例总结与SpringMVC工作流程分析
目录 1.入门案例总结2. 入门案例工作流程分析2.1 启动服务器初始化过程2.2 单次请求过程 欢迎大家回到《Java教程之Spring30天快速入门》,本教程所有示例均基于Maven实现,如果您对Maven还很陌生,请移步本人的博文《如何在windows11下安装Mave…...
设计模式再探——装饰模式
目录 一、背景介绍二、思路&方案三、过程1.装饰模式简介2.装饰模式的类图3.装饰模式代码4.装饰模式,职责父类拆分的奥义5.装饰模式,部件抽象类的无中生有 四、总结五、升华 一、背景介绍 最近公司在做架构模型的时候,涉及到装饰模式的研…...
【Python必做100题】之第一题(求两数相加)
思路:键盘输入两个数字,求出两个数的和并打印 代码如下: num1 int(input("请输入一个数字:")) num2 int(input("再输入一个数字:")) #求两数相加 result num1 num2 print(f"两数相加的…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
生产管理系统开发:专业软件开发公司的实践与思考
生产管理系统开发的关键点 在当前制造业智能化升级的转型背景下,生产管理系统开发正逐步成为企业优化生产流程的重要技术手段。不同行业、不同规模的企业在推进生产管理数字化转型过程中,面临的挑战存在显著差异。本文结合具体实践案例,分析…...
自建 dnslog 回显平台:渗透测试场景下的隐蔽回显利器
🔍 背景介绍 在渗透测试与红队评估过程中,DNS 外带(DNS Exfiltration) 是一种常见且隐蔽的通信通道。由于多数目标环境默认具备外网 DNS 解析能力,即便在 无回显、无文件上传权限 的条件下,仍可通过 DNS 请…...
Java编程中常见的条件链与继承陷阱
格式错误的if-else条件链 典型结构与常见错误模式 在Java编程中,if-else条件链是一种常见的多条件处理模式,其标准结构如下: if (condition1) {// 处理逻辑1 } else if (condition2) {// 处理逻辑2 } else...
