搭建网站服务器教程/怎么在百度发布免费广告
推荐阅读列表:
扩散模型实战(一):基本原理介绍
扩散模型实战(二):扩散模型的发展
扩散模型实战(三):扩散模型的应用
扩散模型实战(四):从零构建扩散模型
扩散模型实战(五):采样过程
扩散模型实战(六):Diffusers DDPM初探
扩散模型实战(七):Diffusers蝴蝶图像生成实战
扩散模型实战(八):微调扩散模型
扩散模型实战(九):使用CLIP模型引导和控制扩散模型
扩散模型实战(十):Stable Diffusion文本条件生成图像大模型
扩散模型实战(十一):剖析Stable Diffusion Pipeline各个组件
扩散模型实战(十二):使用调度器DDIM反转来优化图像编辑
扩散模型实战(十三):ControlNet结构以及训练过程
在之前的文章中,我们主要介绍了扩展模型在文本生成和文本生成图像的应用,本文将介绍在音频领域的应用。
一、安装环境
!pip install -q datasets diffusers torchaudio accelerate
import torch, random
import numpy as np
import torch.nn.functional as F
from tqdm.auto import tqdm
from IPython.display import Audio
from matplotlib import pyplot as plt
from diffusers import DiffusionPipeline
from torchaudio import transforms as AT
from torchvision import transforms as IT
二、从预训练的音频扩散模型Pipeline中进行采样
加载预训练好的音频扩散模型Audio Diffusion(用于生成音频的梅尔谱图)
# 加载一个预训练的音频扩散模型管线
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-
instrumental-hiphop- 256").to(device)
Fetching 5 files: 0%| | 0/5 [00:00<? , ?it/s]
对pipe进行一次采样
# 在管线中采样一次并将采样结果显示出来
output = pipe()
display(output.images[0])
display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate()))
采样结果,如下图所示:
上述代码中,rate参数表示音频的采样率,下面我们查看一下音频序列和频谱
# 音频序列
output.audios[0].shape
# 输出
(1, 130560)
# 输出的图像(频谱)
output.images[0].size
# 输出
(256, 256)
音频并非由扩散模型直接生成的,而是类似于无条件图像生成管道那样,使用一个2D UNet网络结构来生成音频的频谱,之后经过后处理转换为最终的音频。
三、从音频转换为频谱
音频的”波形“在时间上展示了源音频,例如,音频的”波形“可能是从麦克风接收到的电信号。这种”时域“上的表示处理起来比较棘手,因此通常会转换为频谱来处理,频谱能够直接展示不同频率(y轴)和时间(x轴)的强度。
# 使用torchaudio模块计算并绘制所生成音频样本的频谱,如图8-2所示
spec_transform = AT.Spectrogram(power=2)
spectrogram = spec_transform(torch.tensor(output.audios[0]))
print(spectrogram.min(), spectrogram.max())
log_spectrogram = spectrogram.log()
lt.imshow(log_spectrogram[0], cmap='gray');
tensor(0.) tensor(6.0842)
频谱图,如下所示:
以上图刚刚生成的音频样本为例,频谱的取值范围是0.0000000000001~1,其中大部分值接近取值下限,这对于可视化和建模来说不太理想,为此,我们使用了梅尔频谱(Mel spectrogram)对不同频率进行一些变换来符合人耳感知特性,下图展示了torchaudio音频转换方法:
幸运的是,我们使用mel功能可以忽略这些细节,就能吧频谱转换成音频:
a = pipe.mel.image_to_audio(output.images[0])
a.shape
# 输出
(130560,)
读取源音频数据,然后调用audio_slice_to_image()函数,将源音频数据转换为频谱图像。同时较长的音频片段也会自动切片,以便可以正常输出256X256像素的频谱图像,代码如下:
pipe.mel.load_audio(raw_audio=a)
im = pipe.mel.audio_slice_to_image(0)
im
音频被表示成一长串数字数组。若想播放音频,我们需要采样率这个关键信息。
我们查看一下单位时间音频的采样点有多少个?
sample_rate_pipeline = pipe.mel.get_sample_rate()
sample_rate_pipeline
# 输出
22050
如果设置别的采样率,那么会得到一个加速或者减速播放的音频,比如:
display(Audio(output.audios[0], rate=44100)) # 播放速度被加倍
四、微调音频扩散模型数据准备
在了解了音频扩散模型Pipeline使用之后,我们在新的数据集上对其进行微调,我们使用的数据集由不同类别的音频片段集合组成的,代码如下:
from datasets import load_dataset
dataset = load_dataset('lewtun/music_genres', split='train')
dataset
查看一下该数据集不同类别样本所占的比例:
for g in list(set(dataset['genre'])):
print(g, sum(x==g for x in dataset['genre']))
输出内容如下:
Pop 945
Blues 58
Punk 2582
Old-Time / Historic 408
Experimental 1800
Folk 1214
Electronic 3071
Spoken 94
Classical 495
Country 142
Instrumental 1044
Chiptune / Glitch 1181
International 814
Ambient Electronic 796
Jazz 306
Soul-RnB 94
Hip-Hop 1757
Easy Listening 13
Rock 3095
该数据集已将音频存储为数组,代码如下:
audio_array = dataset[0]['audio']['array']
sample_rate_dataset = dataset[0]['audio']['sampling_rate']
print('Audio array shape:', audio_array.shape)
print('Sample rate:', sample_rate_dataset)
# 输出
Audio array shape: (1323119,)
Sample rate: 44100
PS:该音频的采样率更高,要使用该Pipeline,就需要对其进行”重采样“。音频也比Pipeline预设的长度要长,在调用pipe.mel加载该音频时,会被自动切片为较短的片段。代码如下:
a = dataset[0]['audio']['array'] # 得到音频序列
pipe.mel.load_audio(raw_audio=a) # 使用pipe.mel加载音频
pipe.mel.audio_slice_to_image(0) # 输出第一幅频谱图像
sample_rate_dataset = dataset[0]['audio']['sampling_rate']
sample_rate_dataset
# 输出
44100
从上述代码结果可以看出,该数据集的数据在每一秒都拥有两倍的数据点,因此需要调整采样率。这里我们使用torchaudio transforms(导入为AT)进行音频重采样,并使用Pipeline的mel功能将音频转换为频谱图像,然后使用torchvision transforms(导入为IT)将频谱图像转换为频谱张量。一下代码中的to_image()函数可以将音频片段转换为频谱张量,供训练使用:
resampler = AT.Resample(sample_rate_dataset, sample_rate_pipeline,
dtype=torch.float32)
to_t = IT.ToTensor()
def to_image(audio_array):
audio_tensor = torch.tensor(audio_array).to(torch.float32)
audio_tensor = resampler(audio_tensor)
pipe.mel.load_audio(raw_audio=np.array(audio_tensor))
num_slices = pipe.mel.get_number_of_slices()
slice_idx = random.randint(0, num_slices-1) # 每次随机取一张(除了
# 最后那张)
im = pipe.mel.audio_slice_to_image(slice_idx)
return im
整理微调数据
def collate_fn(examples):
# 图像→张量→缩放至(-1,1)区间→堆叠
audio_ims = [to_t(to_image(x['audio']['array']))*2-1 for x in
examples]
return torch.stack(audio_ims)
# 创建一个只包含Chiptune/Glitch(芯片音乐/电子脉冲)风格的音乐
batch_size=4 # 在CoLab中设置为4,在A100上设置为12
chosen_genre = 'Electronic' # <<< 尝试在不同的风格上进行训练 <<<
indexes = [i for i, g in enumerate(dataset['genre']) if g ==
chosen_genre]
filtered_dataset = dataset.select(indexes)
dl = torch.utils.data.DataLoader(filtered_dataset.shuffle(), batch_
size=batch_size,
collate_fn=collate_fn, shuffle=True)
batch = next(iter(dl))
print(batch.shape)
# 输出
torch.Size([4, 1, 256, 256])
五、开始微调音频扩散模模型
epochs = 3
lr = 1e-4
pipe.unet.train()
pipe.scheduler.set_timesteps(1000)
optimizer = torch.optim.AdamW(pipe.unet.parameters(), lr=lr)
for epoch in range(epochs):
for step, batch in tqdm(enumerate(dl), total=len(dl)):
# 准备输入图片
clean_images = batch.to(device)
bs = clean_images.shape[0]
# 为每一张图片设置一个随机的时间步
timesteps = torch.randint(
0, pipe.scheduler.num_train_timesteps, (bs,),
device=clean_images.device
).long()
# 按照噪声调度器,在每个时间步为干净的图片加上噪声
noise = torch.randn(clean_images.shape).to(clean_images.
device)
noisy_images = pipe.scheduler.add_noise(clean_images,
noise, timesteps)
# 得到模型的预测结果
noise_pred = pipe.unet(noisy_images, timesteps, return_
dict=False)[0]
# 计算损失函数
loss = F.mse_loss(noise_pred, noise)
loss.backward(loss)
# 使用优化器更新模型参数
optimizer.step()
optimizer.zero_grad()
# 装载之前训练好的频谱样本,如图8-6所示
pipe = DiffusionPipeline.from_pretrained("johnowhitaker/Electronic_
test").to(device)
output = pipe()
display(output.images[0])
display(Audio(output.audios[0], rate=22050))
# 输入一个不同形状的起点噪声张量,得到一个更长的频谱样本,如图8-7所示
noise = torch.randn(1, 1, pipe.unet.sample_size[0],pipe.unet.
sample_size[1]*4).to(device)
output = pipe(noise=noise)
display(output.images[0])
display(Audio(output.audios[0], rate=22050))
生成的频谱,如下图所示:
生成更长的频谱样本,如下图所示:
思考:
-
我们使用的是256X256像素的方形频谱图像,这会限制batch size,能否从128X128像素的频谱图像中恢复出质量足够好的音频呢?
-
为了替代随机图像增强,我们每次都挑选了不同的音频片段,但这种方法在训练循环后期是否可以用其他增强方法进行优化呢?
-
是否有其他办法可以用来生成更长的音频呢?或者可以先生成开头的5s音频,之后再采用类似图像修复的思路继续生成后续的音频。
-
扩散模型生成的内容与Img2Img生成的内容有什么相同之处?
相关文章:

扩散模型实战(十四):扩散模型生成音频
推荐阅读列表: 扩散模型实战(一):基本原理介绍 扩散模型实战(二):扩散模型的发展 扩散模型实战(三):扩散模型的应用 扩散模型实战(四ÿ…...

《微信小程序开发从入门到实战》学习四十七
4.4 云函数 4.4.5 云函数的定时触发 如果云函数需要定时执行,可以使用云函数定时触发器。配置了定时触发器,云函数会在相应时间点被自动触发。函数返回结果不会返回调用方 在需要添加触发器的云函数下新建文件config.json。格式如下: &quo…...

LeetCode刷题笔记之数组
一、二分查找 1. 704【二分查找】 题目: 给定一个 n 个元素 有序的(升序) 整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。代码:…...

ViT:视觉 Transformer
ViT:视觉 Transformer 网络结构Transformer 编码器MLP 头CNN 和 Transformer 网络结构 Transformer 的优势:注意力机制相当于一个多标签检索系统,位置嵌入能知道每个单词的位置,而且适合并行。 尝试把 Transformer 迁移到视觉领…...

Jmeter 请求签名api接口-BeanShell
Jmeter 请求签名api接口-BeanShell 项目签名说明编译扩展jar包jmeter 使用 BeanShell 调用jar包中的签名方法 项目签名说明 有签名算法的api接口本地不好测试,使用BeanShell 扩展jar 包对参数进行签名,接口签名算法使用 sha512Hex 算法。签名的说明如下…...

No suitable driver found for jdbc:mysql://localhost:3306(2023/12/7更新)
有两种情况: 压根没安装下载了但没设为库或方法不对 大多数为第一种情况: 一. 下载jdbc 打开网址选择一个版本进行下载 https://nowjava.com/jar/version/mysql/mysql-connector-java.html 二.安装jdbc 在项目里建一个lib文件夹 在把之前下载的jar文…...

word文档中数字格式转换(排版助手)
示例:李老师收入了234243.33元,产量3000公斤; 张老师收入了2324324元,产量45555公斤; 孙老师收入了600000元,产量2342公斤 王老师收入了1234443243元,产量1243142公斤。 1、数字批量转换成千…...

阿里云docker加速
文章目录 一、 阿里云镜像仓库配置二、配置加速1. CentOS2. Mac3. Windows注意 一、 阿里云镜像仓库配置 1.注册阿里云账号,并登陆到阿里云后台,进入控制台面板 2.进入控制台以后,找到左上方的三横的功能列表按钮,在弹出来的功能…...

Panalog 日志审计系统 sprog_deletevent.php SQL 注入漏洞复现
0x01 产品简介 Panalog大数据日志审计系统定位于将大数据产品应用于高校、 公安、 政企、 医疗、 金融、 能源等行业之中,针对网络流量的信息进行日志留存,可对用户上网行为进行审计,逐渐形成大数据采集、 大数据分析、 大数据整合的工作模式…...

openGauss学习笔记-152 openGauss 数据库运维-备份与恢复-物理备份与恢复之PITR恢复
文章目录 openGauss学习笔记-152 openGauss 数据库运维-备份与恢复-物理备份与恢复之PITR恢复152.1 背景信息152.2 前提条件152.3 PITR恢复流程152.4 recovery.conf文件配置**152.4.1 归档恢复配置****152.4.2 恢复目标设置** openGauss学习笔记-152 openGauss 数据库运维-备份…...

PhpStorm基本配置及常用快捷键
重要Preference配置 激活服务器 http://jetbrains.tencent.click/http://owo.helphttp://idea.imsxm.com/http://www.0-php.com:10172017.3以上版本 JetBrains IDE 2017.3以上版本,激活检测机制变成了动态封禁域名,导致大部分域名激活被屏蔽了࿰…...

Autosar通信实战系列05-CanNM模块进阶常见问题思考
本文框架 前言1. UDS 0x28服务控制Nm报文收发后对状态机有影响?2. 节点网络启动后第一帧是否必须是网络管理报文?3. 主动唤醒后发送的第一帧报文为NM报文如何配置?4. CanNmMsgCycleOffset的使用场景?5. 什么情况下CBV中RepeatMessageRequest Bit置位?6. 主动(本地)唤醒与…...

Java中多态的一些简单理解
什么是多态 1.面向对象的三大特性:封装、继承、多态。从一定角度来看,封装和继承几乎都是为多态而准备的。这是我们最后一个概念,也是最重要的知识点。 2.多态的定义:指允许不同类的对象对同一消息做出响应。即同一消息可以根据发…...

011 数据结构_哈希
前言 本文将会向你介绍哈希概念,哈希方法,如何解决哈希冲突,以及闭散列与开散列的模拟实现 1. 哈希概念 顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经…...

案例025:基于微信小程序的移动学习平台的设计与实现
文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…...

写实3D游戏模型纹理贴图设置
在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 当谈到游戏角色的3D模型风格时,有几种不同的风格: …...

如何基于Akamai IoT边缘平台打造一个无服务器的位置分享应用
与地理位置有关的应用相信大家都很熟悉了,无论是IM软件里的位置共享或是电商、外卖应用中的配送地址匹配,我们几乎每天都在使用类似的功能与服务。不过你有没有想过,如何在自己开发的应用中嵌入类似的功能? 本文Akamai将为大家提…...

【开源】基于JAVA的木马文件检测系统
项目编号: S 041 ,文末获取源码。 \color{red}{项目编号:S041,文末获取源码。} 项目编号:S041,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 木马分类模块2.3 木…...

KaiOS 运营商相关文件operator_variant_manager.js代码功能和调试
gaia/apps/system/js/operator_variant_manager.js at master mozilla-b2g/gaia GitHub js文件接口功能 No 接口/常量 功能 1 OperatorVariantManager var OperatorVariantManager function(core) 2 OperatorVariantManager.IMPORTS OperatorVariantManager.I…...

【数据结构(六)】排序算法介绍和算法的复杂度计算(1)
文章目录 1. 排序算法的介绍1.1. 排序的分类 2. 算法的时间复杂度2.1. 度量一个程序(算法)执行时间的两种方法2.2. 时间频度2.2.1. 忽略常数项2.2.2. 忽略低次项2.2.2. 忽略系数 2.3. 时间复杂度2.4. 常见的时间复杂度2.5. 平均时间复杂度和最坏时间复杂度 3. 算法的空间复杂度…...

带有 RaspiCam 的 Raspberry Pi 监控和延时摄影摄像机
一、说明 一段时间以来,我一直想构建一个运动激活且具有延时功能的树莓派相机,但从未真正找到我喜欢的案例。我在thingiverse上找到了这个适合树莓派和相机的好案例。它是为特定的鱼眼相机设计的,但从模型来看,我拥有的廉价中国鱼…...

Apache Doris 在某工商信息商业查询平台的湖仓一体建设实践
作者|某工商信息商业查询平台 高级数据研发工程师 李昂 信息服务行业可以提供多样化、便捷、高效、安全的信息化服务,为个人及商业决策提供了重要支撑与参考。对于行业相关企业来说,数据收集、加工、分析能力的重要性不言而喻。以某工商信息…...

【尘缘送书第六期】2023年度学习:AIGC、AGI、GhatGPT、人工智能大模型实现必读书单
【文末送书】今天推荐几本AIGC、AGI、GhatGPT、人工智能大模型领域优质书籍。 目录 前言1 《ChatGPT 驱动软件开发》2 《ChatGPT原理与实战》3 《神经网络与深度学习》4 《AIGC重塑教育》5 《通用人工智能》6 文末送书 前言 2023年是人工智能大语言模型大爆发的一年࿰…...

我的 CSDN 三周年创作纪念日:2020-12-12
本人大叔一枚,自1992年接触电脑,持续了30年的业余电脑发烧爱好者,2022年CSDN博客之星Top58,阿里云社区“乘风者计划”专家博主。自某不知名财校毕业后进入国有大行工作至今,先后任职于某分行信息科技部、电子银行部、金…...

什么是css初始化
什么是css初始化 CSS初始化是指重设浏览器的样式。 因为浏览器的兼容问题,不同浏览器对有些标签的默认值是不同的,如果没对CSS初始化往往会出现浏览器之间的页面显示差异。 每次新开发网站或新网页时候通过初始化CSS样式的属性,为我们将用…...

谁会成为第一个MoE大模型基座呢?重磅!Mixtral MoE 8x7B!!!
文章目录 谁会成为第一个MoE大模型基座呢?重磅!Mixtral MoE 8x7B!!!前言重磅!Mixtral MoE 8x7B!!!Mixtral是啥模型介绍模型结构长啥样?表现如何?可…...

Linux升级nginx版本
处于漏洞修复目的服务器所用nginx是1.16.0版本扫出来存在安全隐患,需要我们升级到1.17.7以上。 一般nginx默认在 /usr/local/ 目录,这里我的nginx是自定义的路径安装在 /app/weblogic/nginx 。 1.查看生产环境nginx版本 cd /app/weblogic/nginx/sbin/…...

人工智能|网络爬虫——用Python爬取电影数据并可视化分析
一、获取数据 1.技术工具 IDE编辑器:vscode 发送请求:requests 解析工具:xpath def Get_Detail(Details_Url):Detail_Url Base_Url Details_UrlOne_Detail requests.get(urlDetail_Url, headersHeaders)One_Detail_Html One_Detail.cont…...

mac苹果笔记本电脑如何强力删除卸载app软件?
苹果电脑怎样删除app?不是把app移到废纸篓就行了吗,十分简单呢! 其实不然,因为在Mac电脑上,删除应用程序只是删除了应用程序的主要组件。大多数时候,系统会有一个相当长的目录,包含所有与应用程…...

net6中使用MongoDB
目录 一、MongoDB是什么? 二、使用步骤 1.安装驱动 2.设置连接字符串、配置类 3.建立实体类 4.服务层 5.在Program添加服务 6.在Controller注入服务 总结 一、MongoDB是什么? MongoDB 是一个开源的、可扩展的、跨平台的、面向文档的非关系型数据库&…...