动态规划(背包问题)
动态规划
文章目录
- 动态规划
- 一、背包问题
- 一、01背包
- 二、完全背包问题
- 三、多重背包问题
- 四、分组背包问题
一、背包问题
一、01背包
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
(1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值(2)不选第i个:F[i−1][j](3)选第i个:F[i−1][j−v[i]]+w[i](4)F[i][j]=max(F[i−1][j],F[i−1][j−v[i]]+w[i])\begin{align} &(1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值\\ &(2)不选第i个:F[i-1][j]\\ &(3)选第i个 :F[i-1][j-v[i]]+w[i]\\ &(4)F[i][j]=max(F[i-1][j],F[i-1][j-v[i]]+w[i]) \end{align} (1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值(2)不选第i个:F[i−1][j](3)选第i个:F[i−1][j−v[i]]+w[i](4)F[i][j]=max(F[i−1][j],F[i−1][j−v[i]]+w[i])
优化前:
memset(f,0,sizeof f);for(int i=1;i<=n;i++)for(int j=0;j<=m;j++){f[i][j]=f[i-1][j]; //不选if(j>=v[i]) f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]); //选}cout<<f[n][m]<<endl;
优化后:(每次只会用到上一层的状态)
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1010;
int n,m;
int f[N];
int v[N],w[N];
int main()
{cin>>n>>m;for(int i=1;i<=n;i++)cin>>v[i]>>w[i];memset(f,0,sizeof f);for(int i=1;i<=n;i++)for(int j=m;j>=v[i];j--){f[j]=max(f[j],f[j-v[i]]+w[i]); //选}cout<<f[m]<<endl;return 0;}
二、完全背包问题
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
(1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值(2)选k(k>=0)个物品i:F[i−1][j−k∗v[i]]+K∗w[i]\begin{align} &(1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值\\ &(2)选k(k>=0)个物品i:F[i-1][j-k*v[i]]+K*w[i]\\ \end{align} (1)F[i,j]:只在前i个物品里选,且总体积不超过j的最大价值(2)选k(k>=0)个物品i:F[i−1][j−k∗v[i]]+K∗w[i]
优化前:
for(int i = 1 ; i<=n ;i++)for(int j = 0 ; j<=m ;j++){for(int k = 0 ; k*v[i]<=j ; k++)f[i][j] = max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);}
优化:
f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w , f[i-1,j-2*v]+2*w , f[i-1,j-3*v]+3*w , .....)
f[i , j-v]= max( f[i-1,j-v] , f[i-1,j-2*v] + w , f[i-1,j-3*v]+2*w , .....)
由上两式,可得出如下递推关系: f[i][j]=max(f[i,j-v]+w , f[i-1][j])
for(int i = 1 ; i <= n ; i++)
for(int j = 0 ; j <= m ; j ++)
{f[i][j] = f[i-1][j];if(j-v[i]>=0)f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
优化变一维:
for(int i = 1 ; i<=n ;i++)for(int j = v[i] ; j<=m ;j++)//注意了,这里的j是从小到大枚举,和01背包不一样{f[j] = max(f[j],f[j-v[i]]+w[i]);}
三、多重背包问题
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
思路1:参考完全背包
int n,m;
int v[N],w[N],s[N];
int f[N][N];int main()
{cin>>n>>m;for(int i=1;i<=n;i++) cin>>v[i]>>w[i]>>s[i];for(int i=1;i<=n;i++)for(int j=0;j<=m;j++)for(int k=0;k<=s[i]&&k*v[i]<=j;k++)f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);cout<<f[n][m]<<endl;return 0;
}
思路2**:二进制优化将n种物品,每种Si个的多重背包,拆分打包看成N件物品(组)的01背包问题**
(1)例如当s[i]=7时(2)将其拆分为:1,2,4的三组,就可以凑出0−7中的任意数(3)s[i]=9时:1,2,4,2就可以凑出0−7中的任意数\begin{align} &(1)例如当s[i]=7时\\ &(2)将其拆分为:1,2,4的三组,就可以凑出0-7中的任意数\\ &(3)s[i]=9时:1,2,4,2就可以凑出0-7中的任意数 \end{align} (1)例如当s[i]=7时(2)将其拆分为:1,2,4的三组,就可以凑出0−7中的任意数(3)s[i]=9时:1,2,4,2就可以凑出0−7中的任意数
#include<iostream>using namespace std;const int M=12000;int n,m;
int f[M],v[M],w[M];
int main()
{cin>>n>>m;int cnt=0;while(n--){int a,b,c;cin>>a>>b>>c;int t=1;while(c>=t){v[++cnt]=a*t;w[ cnt]=b*t;c-=t;t=t*2;}if(c) {v[++cnt]=a*c; w[cnt]=b*c;}}n=cnt;//转化为了01背包for(int i=1;i<=n;i++)for(int j=m;j>=v[i];j--)f[j]=max(f[j],f[j-v[i]]+w[i]);cout<<f[m]<<endl;return 0;
}
四、分组背包问题
有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
(1)F[i,j]:只在前i组里选,且总体积不超过j的最大价值(2)不选:F[i−1][j](3)选i组的第k个:F[i−1][j−v[i][k]]+w[i][k]\begin{align} &(1)F[i,j]:只在前i组里选,且总体积不超过j的最大价值\\ &(2)不选:F[i-1][j]\\ &(3)选i组的第k个:F[i-1][j-v[i][k]]+w[i][k] \end{align} (1)F[i,j]:只在前i组里选,且总体积不超过j的最大价值(2)不选:F[i−1][j](3)选i组的第k个:F[i−1][j−v[i][k]]+w[i][k]
#include<iostream>
using namespace std;
const int N=110;
int n,m;
int s[N],v[N][N],w[N][N];
int f[N][N];
int main()
{cin>>n>>m;for(int i=1;i<=n;i++){cin>>s[i];for(int j=0;j<s[i];j++)cin>>v[i][j]>>w[i][j];}for(int i=1;i<=n;i++)for(int j=0;j<=m;j++){f[i][j]=f[i-1][j]; //不选for(int k=0;k<s[i];k++){if(j>=v[i][k]) f[i][j]=max(f[i][j],f[i-1][j-v[i][k]]+w[i][k]); //选第k个}}cout<<f[n][m]<<endl;return 0;
}
相关文章:
动态规划(背包问题)
动态规划 文章目录动态规划一、背包问题一、01背包二、完全背包问题三、多重背包问题四、分组背包问题一、背包问题 一、01背包 有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。 第 i 件物品的体积是 vi,价值是 wi。 求解将哪些物品装入背包…...
04741自考计算机网络原理最详细汇总
04741自考计算机网络原理知识点总结 引言 第一章 计算机网络概述 1.计算机网络基本概念与网络结构 1.1 计算机网络的概念; 1.2 计算机网络结构 1.3 数据交换技术 1.4 计算机网络性能 1.5 计算机网络体系结构 1.6 计算机网络与因特网发展简史 第二章 网络应用 2.1 网络应用体系…...
MySQL 入门学习笔记(二) 基本操作
MySQL 入门学习笔记(二) 数据库和表的基本操作 我们把一些表的集合称之为数据库,一个服务器中可以存在多个数据库.每个数据库中包含多个表,每个表都有一个名字作为标识,数据表则包含带有数据的记录. PS:SQL 语句对大小写不敏感. 操作数据库命令 在 MySQL 命令中,数据库用DAT…...
【Linux】理解文件系统
文章目录理解文件系统了解磁盘结构inode理解文件系统 了解磁盘结构 磁盘是计算机中的一个 机械设备 这个磁盘的盘片就像光盘一样,数据就在盘片上放着, 但是光盘是只读的,磁盘是可读可写的 机械硬盘的寻址的工作方式: 盘片不断旋转,磁头不断摆动,定位到特定的位置 我们可以把…...
Java如何String字符串带括号转成List
问题现象 今天在做一个需求:将存入数据库中的数据读到后解析成list遍历分析 数据格式: "[1677660600000, 1677660900000, 1677661200000]" "[5, 4, 4,3,2,0,0]" 我一开始想到的就是使用逗号分割即可 结果变成了这样的…...
react 使用 mqtt
也许很多人都好奇这个mqtt是什么东西,其实在互联网上可能不会使用到它,它是物联网上的东西,也是一种通信协议跟websocket。但它也能在浏览器跟服务器上跑,它的底层实现也是封装了websocket。 MQTT MQTT是一个客户端服务端架构的发…...
W25Q256被写保护如何修改
W25Q256被写保护如何修改1、 W25Q256数据读不到1.1 打印的寄存器的值1.2 可能原因1.3 解决办法1.4 用到的函数1、 W25Q256数据读不到 能够正确的读到ID,但是读到的数据不正确 1.1 打印的寄存器的值 0x2 BUSY :只读, 指令正在执行 WEL (1) &…...
论文投稿指南——中文核心期刊推荐(中国文学作品)
【前言】 🚀 想发论文怎么办?手把手教你论文如何投稿!那么,首先要搞懂投稿目标——论文期刊 🎄 在期刊论文的分布中,存在一种普遍现象:即对于某一特定的学科或专业来说,少数期刊所含…...
MySQL 问题总结
什么是MVCC? 说说MySQL实现MVCC的原理? MVCC,全称Multi-Version Concurrency Control,即多版本并发控制。MVCC是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问。 对于「读已提交」和…...
62. 不同路径
62. 不同路径 一个机器人位于一个 m∗nm * nm∗n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路…...
在windows安装python3.11同时进行一个数据的练习
安装包百度网盘如下: 链接:https://pan.baidu.com/s/1l9H1GWP64LOxLaXXLie2uA?pwd6666 提取码:6666 1.我们选择自定义安装 2.当我们点了自定义安装后就直接next 3.修改路径,之后点击安装(install) 4.安装完成,进行…...
Java接口专题
基本介绍 接口给出一些没有实现的方法,封装到一起,到某个类使用时再根据具体情况把这些方法写出来。 注意:在jdk7之前,接口里所有的方法都是抽象方法。在jdk8之后接口中可以有静态方法,默认方法 interface 接口名{/…...
6招优化WordPress打开速度-让你的网站飞起来
为什么我们的WordPress网站比你的快? 我们的官网是使用WordPress框架搭建的,有没有发现我们的网站非常快,而你的WordPress网站比较慢呢?那是因为我们的网站经过了优化。 WordPress 很慢? 为什么很多人都会觉得 Word…...
春天到了,来一场 VoxEdit 创作大赛吧!
春天的气息扑面而来,这是让你尽情绽放创造力的最佳时机!我们将以「春天」为主题来一场 VoxEdit 大赛。在这里,你可以展示你的才华并赢得 $SAND 奖励! 无论你是专业的设计师,还是仅仅喜欢创造美丽的艺术,这场…...
异步Buck和同步Buck的特点
1 介绍 随着时代的发展,工业,车载,通信,消费类等产品都提出了小型化,智能化的需求。相应的,对于这些系统中的电源模块提出了小型化的要求。目前,市场上依然存在很多异步Buck电源管理芯片使用的场…...
基于轻量级YOLO开发构建中国象棋目标检测识别分析系统
关于棋类相关的项目在我之前的博文里面都有做过,如下:《yolov5s融合SPD-Conv用于提升小目标和低分辨率图像检测性能实践五子棋检测识别》《YOLOV5融合SE注意力机制和SwinTransformer模块开发实践的中国象棋检测识别分析系统》《基于yolov5s实践国际象棋目…...
机器学习100天(三十五):035 贝叶斯公式
《机器学习100天》完整目录:目录 机器学习100天,今天讲的是:贝叶斯公式! 好了,上一节介绍完先验概率、后验概率、联合概率、全概率后,我们来看这样一个问题:如果我现在挑到了一个瓜蒂脱落的瓜,则该瓜是好瓜的概率多大? 显然,这是一个计算后验概率的问题,根据我们之…...
大话数据结构-栈
1 概述 栈(Stack)是限定仅在表尾进行插入和删除操作的线性表。 允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom),不含任何数据元素的栈称为空栈,栈又称为后进…...
javaFx实现放大镜效果——圆形、矩形、三角形放大镜,拖动调整放大镜大小,设置放大倍数
系列文章专栏:javafx图形绘制、桌面录屏录音源码合集 目录 一、实现的效果 二、实现思路 三、程序实现...
什么是客户忠诚度?建立忠诚文化的 5 种方法
客户忠诚度影响企业的各个方面,例如收入、品牌形象、预算分配和产品路线图。拥有忠实的客户群对于建立成功的企业至关重要,因为您的客户是您的主要拥护者,有助于为您的企业营造积极的氛围。 什么是客户忠诚度? 客户忠诚度衡量客户…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
