【深度学习】TensorFlow深度模型构建:训练一元线性回归模型
文章目录
- 1. 生成拟合数据集
- 2. 构建线性回归模型数据流图
- 3. 在Session中运行已构建的数据流图
- 4. 输出拟合的线性回归模型
- 5. TensorBoard神经网络数据流图可视化
- 6. 完整代码
本文讲解:
以一元线性回归模型为例,
- 介绍如何使用TensorFlow 搭建模型 并通过会话与后台建立联系,并通过数据来训练模型,求解参数, 直到达到预期结果为止。
- 学习如何使用TensorBoard可视化工具来展示网络图、张量的指标变化、张量的分布情况等。
设给定一批由 y=3x+2生成的数据集( x ,y ),建立线性回归模型h(x)= wx + b ,预测出 w=3 和 b=2。
1. 生成拟合数据集
数据集只含有一个特征向量,注意误差项需要满足高斯分布(正态分布),程序使用了NumPy和Matplotlib库。
- NumPy是Python的一个开源数值科学计算库,可用来存储和处理大型矩阵。
- Matplotlib是Python的绘图库,它可与NumPy一起使用,提供了一种有效的MATLAB开源替代方案。
其代码如下:
# 首先导入3个库
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt# 随机产生100个数据点,随机概率符合高斯分布(正态分布)
num_points = 100
vectors_set = []
for i in range(num_points):# Draw random samples from a normal (Gaussian) distribution.x1 = np.random.normal(0., 0.55)y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)# 坐标点vectors_set.append([x1, y1])
# 定义特征向量x
x_data = [v[0] for v in vectors_set]
# 定义标签向量y
y_data = [v[1] for v in vectors_set]# 按[x_data,y_data]在X-Y坐标系中以打点方式显示,调用plt建立坐标系并将值输出
plt.scatter(x_data, y_data, c='b')
plt.show()
2. 构建线性回归模型数据流图
# 利用TensorFlow随机产生w和b,为了图形显示需要,分别定义名称 myw 和 myb
w = tf.Variable(tf.compat.v1.random_uniform([1], -1., 1.), name='myw')
b = tf.Variable(tf.zeros([1]), name='myb')
# 根据随机产生的w和b,结合上面随机产生的特征向量x_data,经过计算得出预估值
y = w * x_data + b
# 以预估值y和实际值y_data之间的均方差作为损失
loss = tf.reduce_mean(tf.square(y - y_data, name='mysquare'), name='myloss')
# 采用梯度下降法来优化参数
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss, name='mytrain')
3. 在Session中运行已构建的数据流图
# global_variables_initializer初始化Variable等变量
sess = tf.compat.v1.Session()
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
print("w=", sess.run(w), "b= ", sess.run(b), sess.run(loss))
# 迭代20次train
for step in range(20):sess.run(train)print("w=", sess.run(w), "b=", sess.run(b), sess.run(loss))
输出w和b,损失值的变化情况,可以看到损失值从0.42降到了0.001。当然每次拟合的结果都不一致。
4. 输出拟合的线性回归模型
plt.scatter(x_data, y_data, c='b')
plt.plot(x_data, sess.run(w) * x_data + sess.run(b))
plt.show()
5. TensorBoard神经网络数据流图可视化
TensorBoard 是 TensorFlow 的可视化工具包 , 使用者通过TensorBoard可以将代码实现的数据流图以可视化的图形显示在浏览器中,这样方便使用者编写和调试TensorFlow数据流图程序。
首先,将数据流图写入到文件中
# 写入磁盘,以供TensorBoard在浏览器中展示
writer = tf.compat.v1.summary.FileWriter("./mytmp", sess.graph)
运行该代码后就可以将整个神经网络节点信息写入./mytmp目录下。
打开终端,执行如下命令
tensorboard --logdir=./tensflow-demo/mytmpServing TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.15.1 at http://localhost:6007/ (Press CTRL+C to quit)
访问 http://localhost:6007/
,如下图生成的神经网络数据流图
通过添加参数--bind_all
将图暴露给网络。
6. 完整代码
# 首先导入3个库
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt# 随机产生100个数据点,随机概率符合高斯分布(正态分布)
num_points = 100
vectors_set = []
for i in range(num_points):# Draw random samples from a normal (Gaussian) distribution.x1 = np.random.normal(0., 0.55)y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)# 坐标点vectors_set.append([x1, y1])
# 定义特征向量x
x_data = [v[0] for v in vectors_set]
# 定义标签向量y
y_data = [v[1] for v in vectors_set]# 按[x_data,y_data]在X-Y坐标系中以打点方式显示,调用plt建立坐标系并将值输出
# plt.scatter(x_data, y_data, c='b')
# plt.show()tf.compat.v1.disable_v2_behavior()# 利用TensorFlow随机产生w和b,为了图形显示需要,分别定义名称myw 和 myb
w = tf.Variable(tf.compat.v1.random_uniform([1], -1., 1.), name='myw')
b = tf.Variable(tf.zeros([1]), name='myb')
# 根据随机产生的w和b,结合上面随机产生的特征向量x_data,经过计算得出预估值
y = w * x_data + b
# 以预估值y和实际值y_data之间的均方差作为损失
loss = tf.reduce_mean(tf.square(y - y_data, name='mysquare'), name='myloss')
# 采用梯度下降法来优化参数
optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss, name='mytrain')# global_variables_initializer初始化Variable等变量
sess = tf.compat.v1.Session()
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
print("w=", sess.run(w), "b= ", sess.run(b), sess.run(loss))
# 迭代20次train
for step in range(20):sess.run(train)print("w=", sess.run(w), "b=", sess.run(b), sess.run(loss))# 写入磁盘,供TensorBoard在浏览器中展示
# writer = tf.compat.v1.summary.FileWriter("./mytmp", sess.graph)
#
plt.scatter(x_data, y_data, c='b')
plt.plot(x_data, sess.run(w) * x_data + sess.run(b))
plt.show()
因为运行的是TensorFlow 1.x 系统运行的是 TensorFlow 2.x.,所以运行过程中有两个问题:
1.没有Session
在 TF2 中可以通过 tf.compat.v1.Session()
访问会话
2.loss
passed to Optimizer.compute_gradients should be a function when eager execution is enabled
在代码前面添加如下代码,屏蔽v2的行为
tf.compat.v1.disable_v2_behavior()
相关文章:
【深度学习】TensorFlow深度模型构建:训练一元线性回归模型
文章目录 1. 生成拟合数据集2. 构建线性回归模型数据流图3. 在Session中运行已构建的数据流图4. 输出拟合的线性回归模型5. TensorBoard神经网络数据流图可视化6. 完整代码 本文讲解: 以一元线性回归模型为例, 介绍如何使用TensorFlow 搭建模型 并通过会…...
智能插座是什么
智能插座 电工电气百科 文章目录 智能插座前言一、智能插座是什么二、智能插座的类别三、智能插座的原理总结 前言 智能插座的应用广泛,可以用于智能家居系统中的电器控制,也可以应用在办公室、商业场所和工业控制中,方便快捷地实现电器的远…...
5G工业网关视频传输应用
随着科技的不断进步,5G网络技术已经成为了当前最热门的话题之一。而其中一个引人注目的领域就是5G视频传输和5G工业网关应用。在传统网络通信中,由于带宽和延迟的限制,视频传输常常受到限制,而工业网关应用也存在着链路不稳定、数…...
Axure电商产品移动端交互原型,移动端高保真Axure原型图(RP源文件手机app界面UI设计模板)
本作品是一套 Axure8 高保真移动端电商APP产品原型模板,包含了用户中心、会员成长、优惠券、积分、互动社区、运营推广、内容推荐、商品展示、订单流程、订单管理、售后及服务等完整的电商体系功能架构和业务流程。 本模板由一百三十多个界面上千个交互元件及事件组…...
【k8s】使用Finalizers控制k8s资源删除
文章目录 词汇表基本删除操作Finalizers是什么?Owner References又是什么?强制删除命名空间参考 你有没有在使用k8s过程中遇到过这种情况: 通过kubectl delete指令删除一些资源时,一直处于Terminating状态。 这是为什么呢? 本文将…...
vscode
文章目录 变量引用Multi-selections(multi-cursor)Column (box) selection在正则表达式替换中改变大小写tasks.jsonlaunch.json vscode工作空间下有一个.vscode文件夹,该文件夹下放置了vscode的配置文件,主要有: settings.json : vscode的设置…...
Jrebel 在 Idea 2023.3中无法以 debug 的模式启动问题
Jrebel 在 Idea 2023.3中无法以 debug 的模式启动问题 Idea 在升级了2023.3以后,Jrebel 无法以 debug 的模式启动,找了半天,最后在插件主页的评论区找到了解决方案 特此记录一下...
【C++】模版初阶(初识模版)
目录 一、引言 二、函数模版 (一)函数模版的原理 (二)函数模版的实例化 1.隐式实例化 2.显式实例化 (三)模板参数的匹配原则 三、类模版 类模版的实例化 一、引言 我们在练习题目的时候总会遇到需…...
智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.差分进化算法4.实验参数设定5.算法结果6.…...
10 种隐藏元素的 CSS 技术
10 种隐藏元素的 CSS 技术 在 Web 开发中,在许多情况下我们可能希望操纵网站上某些元素的可见性。本文将考虑各种用例,探讨使用 CSS 隐藏元素的十种不同方法。 隐藏元素的具体行为可能会根据我们的需要而有所不同。我们可能需要为隐藏元素保留空间的方…...
SQL Server数据库使用T-SQL语句简单填充
文章目录 操作步骤:1.新建数据库起名RGB2.新建表起名rgb3.添加三个列名4.点击新建查询5.填入以下T-SQL语句,点击执行(F5)6.刷新之后,查看数据 操作环境: win10 Microsoft SQL Server Management Studio 20…...
逻辑回归代价函数
逻辑回归的代价函数通常使用交叉熵损失来定义。这种损失函数非常适合于二元分类问题。 本篇来推导一下逻辑回归的代价函数。 首先,我们在之前了解了逻辑回归的定义:逻辑回归模型是一种用于二元分类的模型,其预测值是一个介于0和1之间的概率…...
芯知识 | WT2003Hx系列高品质语音芯片MP3音频解码IC的特征与应用优势
在嵌入式语音领域,唯创知音WT2003Hx系列高品质语音芯片以其卓越的音频解码性能脱颖而出。本文将深入研究该系列芯片的特色与应用优势,重点关注其支持wav、Mp3格式音频解码、高品质播放等方面。 特色一:支持wav、Mp3格式音频解码 1.多格式兼…...
node.js 启一个前端代理服务
文章目录 前言一、分析技术二、操作步骤2.1、下载依赖2.2、创建一个 serve.js 文件2.3、js 文件中写入以下代码 三、运行: node serve四、结果展示五、总结六、感谢 前言 有时候我们需要做一些基础的页面时,在研发过程中需要代理调用接口避免浏览器跨域…...
弹性搜索引擎Elasticsearch:本地部署与远程访问指南
🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言系统环境1. Windows 安装Elasticsearch2. 本地访问Elasticsearch3. Windows 安装…...
微信小程序生成二维码海报并分享
背景:点击图标,生成海报后,点击保存相册,可以保存 生成海报:插件wxa-plugin-canvas,此处使用页面异步生成组件方式,官网地址:wxa-plugin-canvas - npm 二维码:调用后端…...
Windows安装Tesseract OCR与Python中使用pytesseract进行文字识别
文章目录 前言一、下载并安装Tesseract OCR二、配置环境变量三、Python中安装使用pytesseract总结 前言 Tesseract OCR是一个开源OCR(Optical Character Recognition)引擎,用于从图像中提取文本。Pytesseract是Tesseract OCR的Python封装&am…...
【答案】2023年国赛信息安全管理与评估第三阶段夺旗挑战CTF(网络安全渗透)
【答案】2023年国赛信息安全管理与评估第三阶段夺旗挑战CTF(网络安全渗透) 全国职业院校技能大赛高职组信息安全管理与评估 (赛项) 评分标准 第三阶段 夺旗挑战CTF(网络安全渗透) *竞赛项目赛题* 本文…...
springboot 集成 redis luttuce redisson ,单机 集群模式(根据不同环境读取不同环境的配置)
luttuce 和redisson配置过程中实际上是独立的,他们两个可以同时集成,但是没有直接相关关系,配置相对独立。 所以分为Lettuce 和 Redisson 两套配置 父pom <!-- Spring Data Redis --><dependency><groupId>org.springframe…...
PPT插件-好用的插件-PPT 素材该怎么积累-大珩助手
PPT 素材该怎么积累? 使用大珩助手中的素材库功能,将Word中的,或系统中的文本文件、图片、其他word文档、pdf,所有见到的好素材,一键收纳。 步骤:选中文件,按住鼠标左键拖到素材库界面中&…...
qt 正则表达式简单介绍
正则表达式即一个文本匹配字符串的一种模式,Qt中使用QRegExp类进行模式匹配.主要应用:字符串验证,搜索,替换,分割..... 正则表达式中字符及字符集 c 匹配字符本身,如a匹配a \c 跟在\后面的字符匹配字符本身,但本表中下面指定的这些字符除外。 \a 匹…...
Redis设计与实现之跳跃表
目录 一、跳跃表 1、跳跃表的实现 2、跳跃表的应用 3、跳跃表的时间复杂度是什么? 二、跳跃表有哪些应用场景? 三、跳跃表和其他数据结构(如数组、链表等)相比有什么优点和缺点? 四、Redis的跳跃表支持并发操作吗…...
[每周一更]-(第27期):HTTP压测工具之wrk
[补充完善往期内容] wrk是一款简单的HTTP压测工具,托管在Github上,https://github.com/wg/wrkwrk 的一个很好的特性就是能用很少的线程压出很大的并发量. 原因是它使用了一些操作系统特定的高性能 io 机制, 比如 select, epoll, kqueue 等. 其实它是复用了 redis 的 ae 异步事…...
【FunASR】Paraformer语音识别-中文-通用-16k-离线-large-onnx
模型亮点 模型文件: damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorchParaformer-large长音频模型集成VAD、ASR、标点与时间戳功能,可直接对时长为数小时音频进行识别,并输出带标点文字与时间戳: ASR模型…...
C语言中的柔性数组
uint8_t data[0];代码的含义老虎开始对这个数组不太了解,查阅后得知这是个柔性数组。 C语言中的柔性数组(Flexible Array Member)是一种特殊的数组,它被定义在结构体的最后一个元素中,其大小未知,也就是所…...
ca-certificates.crt解析加载到nssdb中
openssl crl2pkcs7 -nocrl -certfile /etc/ssl/certs/ca-certificates.crt | openssl pkcs7 -print_certs -noout -text ca-certificates.crt为操作系统根证书列表。 获取证书以后使用PK11_ImportDERCert将证书导入到nssdb中 base::FilePath cert_path base::FilePath("…...
聊聊Java中的常用类String
String、StringBuffer、StringBuilder 的区别 从可变性分析 String不可变。StringBuffer、StringBuilder都继承自AbstractStringBuilder ,两者的底层的数组value并没有使用private和final修饰,所以是可变的。 AbstractStringBuilder 源码如下所示 ab…...
R语言piecewiseSEM结构方程模型在生态环境领域实践技术
结构方程模型(Sructural Equation Modeling,SEM)可分析系统内变量间的相互关系,并通过图形化方式清晰展示系统中多变量因果关系网,具有强大的数据分析功能和广泛的适用性,是近年来生态、进化、环境、地学、…...
IDEA设置查看JDK源码
问题 我们在查看JDK源码时,可能会遇到这种情况,步入底层查看JDK源码时,出现一堆var变量,可读性非常之差,例如笔者最近想看到nio包下的SocketChannelImpl的write方法,结果看到这样一番景象: pu…...
SSM—Mybatis
目录 和其它持久化层技术对比 搭建MyBatis 开发环境 创建maven工程 创建MyBatis的核心配置文件 创建mapper接口 创建MyBatis的映射文件 通过junit测试功能 加入log4j日志功能 核心配置文件详解 MyBatis的增删改查 新增 删除 修改 查询一个实体类对象 查询list集…...
pycharm网站开发实例/百度扫一扫识别图片
学习 Python 之 Pygame 开发魂斗罗(一)Pygame回忆Pygame1. 使用pygame创建窗口2. 设置窗口背景颜色3. 获取窗口中的事件4. 在窗口中展示图片(1). pygame中的直角坐标系(2). 展示图片(3). 给部分区域设置颜色5. 在窗口中显示文字6. 播放音乐7. 图片翻转与…...
做外贸常用的网站有哪些/谷歌优化排名怎么做
SAP CO模块 KSV5 费用分摊分配解析 2018年07月18日 13:22:40 SAP小菜鸟鸟 阅读数:2073 CO成本控制是SAP财务的一大难点,有些地方可能会比较绕,但是捋顺思路,其实也还行。 (文中所有数据来源皆为作者杜撰,请勿对号入…...
django做企业级网站/拉新推广渠道
毕业时写了一段时间的C,那时候调试使用gdb,后来转了java,当时就想java程序怎么调试,找了一下,果然,那就是jdk自带的jdbwindows里是这样的Linux下是这样的一般我在linux下来调试Java程序好,那么,问题来了&am…...
盘锦如何做百度的网站/网站优化招商
Docker 修改容器端口 本文介绍如何修改容器端口 对于已经创建的容器,可以通过下面的方法修改端口: 将容器提交为镜像,重新运行修改容器配置文件 将容器提交为镜像,重新运行 略 修改容器配置文件 修改前需要关闭docker&…...
sae+wordpress/手机端搜索引擎排名
数据结构与算法 二分查找 一、简述 记--二分查找的C语言简单实现。 例子打包:外链:https://wwi.lanzouq.com/b0ca7a38b 密码:ckk5 二、二分查找 释义 假设有一个有序表A,元素个数为n,要查找元素为K 1)将A表分成左右两个子表A…...
天长做网站的/2345网址导航删除办法
「2019 Python开发者日」全日程揭晓,请扫码咨询 ↑↑↑作者 | 伊凡伊德里斯(Ivan Idris),曾是Java和数据库应用开发者,后专注于Python和数据分析领域,致力于编写干净、可测试的代码。他还是《Python Machin…...